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ABSTRACT
The quality variance in user-generated content is a major bottle-
neck to serving communities on online platforms. Current content
ranking methods primarily evaluate textual/non-textual features
of each user post in isolation. This paper demonstrates the util-
ity of the implicit and explicit relational aspects across user con-
tent to assess their quality. First, we develop a modular platform-
agnostic framework to represent the contrastive (or competing)
and similarity-based relational aspects of user-generated content
via independently induced content graphs. Second, we develop two
complementary graph convolutional operators that enable feature
contrast for competing content and feature smoothing/sharing for
similar content. Depending on the edge semantics of each content
graph, we embed its nodes via one of the above two mechanisms.
We show that our contrastive operator creates discriminative mag-
nification across the embeddings of competing posts. Third, we
show a surprising result—applying classical boosting techniques to
combine embeddings across the content graphs significantly out-
performs the typical stacking, fusion, or neighborhood aggregation
methods in graph convolutional architectures. We exhaustively val-
idate our method via accepted answer prediction over fifty diverse
Stack-Exchanges1 with consistent relative gains of ∼ 5% accuracy
over state-of-the-art neural, multi-relational and textual baselines.
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1 INTRODUCTION
With technology affordances and low entry barriers, large-scale
online platforms such as discussion forums, product/business re-
view platforms, and social networks incorporate and even rely on
user-generated content. Unlike published content, user content
is added at an unprecedented rate. The popular Stack-Overflow
Q&A platform hosts more than twenty million questions with over
ten thousand added each day. Unlike traditional query-document
ranking, user-generated content is organized by the intended au-
dience. For instance, answers on the Stack-Exchange platform are
grouped by questions, tags, and other criteria, while product cate-
gories and other identifiers group product reviews. Most platforms
annotate posts or reviews as accepted, verified or most useful by
category, either via expert feedback or user votes. Thus, unlike the
Learning-to-Rank training approach [19], user-generated content
requires category-specific ranking irrespective of the model choice,
i.e., given a particular category (or grouping) of interest, what is
the most useful post that may be shown to a user?

Prior work typically identifies salient content features to estimate
quality [2, 13, 20]. In this vein, neural text models represent textual
features [41, 42, 37] to assess the quality of each post in isolation
with a category-independent ranking function. We refer to this as a
reflexive approach since posts are evaluated agnostic to competitors
or peer content. The reflexive approach is insufficient when content
is specifically ranked by contrast to other content in the same
category (e.g., answers to a specific question or critical reviews to
a product), or even by similarity to content in a different category
(e.g., early answers on Stack-Exchanges [36]).

In contrast to reflexive approaches, we can contextualize the
category-specific roles of user content by explicitly incorporating
their relational aspects. Specifically, we represent these relational
aspects as content graphs, where the edge semantics can be cho-
sen to represent various relations across user-generated content.
The links of a content graph can be chosen to connect competing
content and contrast their features to obtain an improved ranking,
i.e., contrastive graphs. Alternately, it can connect content across
different categories based on their relative similarities to provide
cues to content quality, i.e., similarity graphs. There may be sev-
eral platform-specific approaches to construct contrastive graphs or
similarity graphs to represent the relational aspects of content on
the platform. In contrast to reflexive approaches that only consider
content features, we develop a platform-agnostic framework to si-
multaneously incorporate contrastive and similarity content graphs
to holistically rank user-generated content.

Graph Convolutional Networks (GCNs) learn scalable attrib-
uted graph representations towards tasks such as node classifi-
cation [15, 38] and link prediction [28]. However, popular GCN
architectures [15, 28, 11] implicitly assume latent similarities among
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connected node neighborhoods and generate smoothed vertex rep-
resentations [24]. This view is incompatible with contrastive con-
tent graphs linking competing posts on online platforms. GCN
extensions such as signed and multi-relational networks [4, 28] do
not address the fundamental challenge of modeling feature contrast
among connected nodes. GCN layers implicitly smooth neighbor
features and shrink feature contrast [39, 24].

This paper develops a novel framework to incorporate both
the similarity and contrastive relational aspects of user-generated
content through independently induced content graphs. We classify
content graphs in three broad platform-agnostic aspects: contrastive
graphs (where content nodes are ranked against their neighbors),
similarity graphs, and finally, reflexive graphs with only self-edges to
incorporate purely feature-based ranking. We then develop graph
convolutional operators to achieve feature smoothing and con-
trast mechanisms for similarity and contrastive graphs. Finally, we
develop a parsimonious boosting framework to combine represen-
tation across all content graphs towards content quality estimation.
In summary, our contributions are:
• Modular Platform-AgnosticRelational Framework for
Content Ranking: We develop a unified boosting frame-
work incorporating content graphs to represent the rela-
tional aspects of user content. While prior work evaluates
content in isolation [2, 13], we develop feature contrast and
feature smoothing mechanisms to accommodate diverse con-
tent graph semantics in our Induced Relational Graph Con-
volutional Network (IR-GCN) framework.
• Discriminative Semantics:We propose a simple contrastive

convolution approach to differentiate connected vertices in a
contrastive graph. While graph convolution typically encap-
sulates neighbor feature smoothing (e.g., [15, 43]), we show
that our contrast mechanism creates discriminative mag-
nification to identify feature contrasts between competing
content nodes.
• Boosting vs. Neural Aggregation: With extensive empir-

ical results, we show the effectiveness of learning different
convolutional representations across diverse content graphs
followed by a boosting approach to combine their predic-
tions. The proposed boosting approach is computationally
faster and more effective than neural architectures that stack,
fuse, or aggregate the content vertices representations across
the different content graphs.

We extensively validate our IR-GCN framework on fifty Stack-
Exchange Question-Answer websites chosen over all five discussion
domains 2. We achieve consistent relative improvements of over 5%
accuracy and 3% MRR over state-of-the-art text and multi-relational
graph-based baselines on the accepted answer prediction task.

2 PRELIMINARIES
Let Q denote the set of categories of user-generated content on
the platform or website of interest. Each category 𝑞 ∈ Q has an
associated set of competing user-generated posts A𝑞 . Thus, for
each category-post pair (𝑞, 𝑎) where 𝑞 ∈ Q, 𝑎 ∈ A𝑞 , we generate a
quality score to rank posts within the same category.

2https://stackexchange.com/sites

Content Graphs: We induce multiple content graphs to repre-
sent the relational aspects of the user-generated posts. The content
graph induction techniques depend on the content platform. We
classify each content graph as a similarity graph, where connec-
tions between nodes indicate similarities in content quality, or a
contrastive graph where connected nodes directly compete against
each other, e.g., posts under the same category. Finally, we include
the trivial reflexive content graph with only self- edges between
content nodes to incorporate relation-agnostic feature-based rank-
ing. Thus, the set of all content graphs G can be given by,

G = GC ∪ GS ∪ GR
where GC , GS and GR denotes the sets of contrastive graphs, sim-
ilarity graphs and the reflexive graph respectively. We may have
multiple contrastive graphs connecting competing content or mul-
tiple similarity graphs connecting similar content depending on
the platform, but only one reflexive graph in the set GR (the set of
all nodes with only self-edges).

Each graph G ∈ GC / GS / GR is given by G = (𝑉 , 𝐸G) (ad-
jacency matrix AG), where node set 𝑉 contains all category-post
pairs (𝑞, 𝑎) and edge set 𝐸G varies for each content graph. Our
framework unifies content graphs to generate an aggregate quality
score for each category-post pair (𝑞, 𝑎).

Task Description: On most platforms incorporating user con-
tent, users (or platform moderators) annotate a single post in each
category as the highest quality/most helpful post. For instance, ac-
cepted Stack-Exchange answers [32], verified Reddit posts [20] and
the most helpful product reviews on E-commerce websites [21]. To
evaluate our ranking approach, we generate quality scores for each
category-post pair (𝑞, 𝑎) (𝑞 ∈ Q, 𝑎 ∈ A𝑞) and match the ground
truth accepted/verified post with the highest-scored post in each
category. In essence, we can only validate the top result of our
ranking against the ground truth data. However, depending on the
available ground truth labels, our model outputs trivially lend to a
top-N ranking evaluation.

3 INDUCED RELATIONAL GCN (IR-GCN)
We now briefly review Graph Convolution Networks (GCNs) and
develop graph convolutional operators to achieve feature contrast
between connected nodes in the contrastive graphs G ∈ GC (Sec-
tion 3.2) and feature smoothing across connected nodes in the
similarity graphs G ∈ GS (Section 3.3) respectively.

3.1 Graph Convolution
Graph convolution models adapt the convolution operation on
regular grids (such as image pixels) to graph-structured data G =

(𝑉 , 𝐸G), learning low-dimensional vertex representations. Let 𝑁
denote the number of vertices, and X ∈ R𝑁 ∗𝑑 the d-dimensional
features of the vertices. The graph convolution operation for vertex
𝑣 ∈ 𝑉 with features X𝑣 ∈ R𝑁 , and a learned filter 𝑔𝜃 in the fourier
domain can be efficiently approximated via first-order terms [15],

𝑔𝜃 ∗ X𝑣 = 𝜃0X𝑣 + 𝜃1 (L − I𝑁 ) X𝑣 (1)

with the normalized graph Laplacian, L = I𝑁 − D−1/2AD−1/2, where
A denotes the adjacency matrix of graph G with 𝑁 vertices and
D𝑖𝑖 =

∑
𝑗 A𝑖 𝑗 is the corresponding diagonal degree matrix. The

filter parameters, 𝜃0 and 𝜃1 are shared across all vertices.



3.2 Contrastive Graph Convolution
3.2.1 Contrastive Graph Structure. We define contrastive graphs

G ∈ GC to inter-connect competing posts that are ranked against
each other. There are several ways to determine sets of competing
posts depending on the platform and viewer objectives, e.g., answers
to the same question in a Q&A forum or product reviews of the
same product or product category. In each case, the resulting graph
is a collection of disconnected cliques of competing content, where
each clique inter-connects all competing posts within a specific
category, irrespective of how they are constructed. We illustrate
the resulting disconnected clique structure in Figure 1.

3.2.2 Contrastive Convolution. We now describe our graph con-
volution approach for the contrastive graphs to enhance feature
contrast in the latent representation space for competing posts
within each clique. To achieve this, we modify Equation (1) by set-
ting 𝜃 = 𝜃0 = 𝜃1. Consider a specific vertex 𝑢 with features x𝑢 (such
as user features and textual features). The above modification then
leads to the following convolution operation for vertex u:

𝑔𝜃 ∗ x𝑢 = 𝜃 (I𝑁 + L − I𝑁 ) x𝑢 = 𝜃

(
I𝑁 − D−1/2AD−1/2

)
x𝑢 (2)

When we apply Equation (2) to modify each graph convolution
layer of the GCN, the output for the 𝑘𝑡ℎ layer can be given by:

Z𝑘G = 𝜎

((
I𝑁 − D−1/2AGD−

1/2
)
Z𝑘−1
G W𝑘

G

)
(3)

where AG denotes the adjacency matrix of the contrastive graph
G ∈ GC , Z𝑘G ∈ R𝑁×𝑑 is the matrix of the 𝑘𝑡ℎ layer vertex em-
beddings, and Z𝑘−1

G denotes the previous layer embeddings under
contrastive convolution, 𝑁 the total number of vertices and 𝑑 is
the chosen embedding dimensionality. Note that Z0

G = X where X
is the input feature matrix of the vertices. W𝑘

G denotes the filter
parameters of the 𝑘𝑡ℎ convolutional layer on graph G, and 𝜎 (·) is
the chosen layer activation (e.g. ReLU, tanh).

Let us now consider Equation (3) for a specific vertex 𝑢. The
convolution operation in Equation (3) expands as follows, where
Z𝑘G (𝑢) denotes the 𝑘𝑡ℎ convolution layer output for 𝑢:

Z𝑘G (𝑢) = 𝜎
©­«©­«Z𝑘−1

G (𝑢) − 1
|N𝑢 |

∑
𝑣∈N𝑢

Z𝑘−1
G (𝑣)ª®¬W𝑘

G
ª®¬ (4)

Clearly, the 𝑘𝑡ℎ layer computes the feature differences (or feature
contrast) between the node 𝑢 and its neighbors in the 𝑘 − 1𝑡ℎ layer
as opposed to the default operation in Equation (1).

Since our contrastive graph contains cliques of competing ver-
tices, each vertex is a neighbor to all the other competing vertices.
To understand the effect of Equation (3) on a specific (𝑞, 𝑎) pair,
consider competing vertices 𝑢 and 𝑣 in a clique of size 𝑛 (so that
|N𝑢 | = |N𝑣 | = n-1). From Equation (4):

Z𝑘G (𝑢) − Z𝑘G (𝑣) = 𝜎
©­«©­«Z𝑘−1

G (𝑢) − 1
𝑛 − 1

∑
𝑣′∈N𝑢

Z𝑘−1
G (𝑣 ′)ª®¬W𝑘

G
ª®¬

− 𝜎 ©­«©­«Z𝑘−1
G (𝑣) − 1

𝑛 − 1
∑
𝑣′∈N𝑣

Z𝑘−1
G (𝑣 ′)ª®¬W𝑘

G
ª®¬ (5)

Let us analyze Equation (5) by replacing the non-saturated part
of 𝜎 with linear function 𝜎 (𝑦) = 𝛼𝑦 + 𝛽 ,

Z𝑘G (𝑢) − Z𝑘G (𝑣)︸             ︷︷             ︸
contrast in the current layer

= 𝛼W𝑘
G

(
Z𝑘−1
G (𝑢) − 1

𝑛 − 1Z
𝑘−1
G (𝑣) − Z𝑘−1

G (𝑣) + 1
𝑛 − 1Z

𝑘−1
G (𝑢)

)
= 𝛼 W𝑘

G︸︷︷︸
learned filter

(
1 + 1

𝑛 − 1

)
︸        ︷︷        ︸
magnification

×
(
Z𝑘−1
G (𝑢) − Z𝑘−1

G (𝑣)
)

︸                      ︷︷                      ︸
contrast in the previous layer

(6)

Note that the other neighbor terms cancel out in Equation (6)
except for the two vertices 𝑢 & 𝑣 , since they are part of the same
clique and have the same neighbors except each other.

As a result, across each convolutional layer, the feature contrasts
between competing vertices in the same clique are expanded by the
inverse clique size. The learned filters W𝑘

G have a more significant
impact on the embedding displacements of competing vertices.
We term this translation as Discriminative Feature Magnification.
Equation (6) also shows a more pronounced magnification effect
for smaller cliques, leading to sharper distinctions.

3.3 Similarity Graph Convolution
3.3.1 Similarity Graph Structure. We define similarity graphs

G ∈ GS to link posts with similar characteristics across different
categories. As opposed to direct feature similarity measures, we
link posts that compare in similar ways against their respective
competitors, i.e., similar by comparison to peers. Note that similarity
by comparison with the competing content is particularly suited to
category-wise ranking scenarios.

As in the contrastive case, there are multiple criteria to deter-
mine similar posts across two different categories, e.g., two product
reviews may be similar by both being more informative than their re-
spective competitors. At the same time, faster answers to questions
on Q&A forums are similar by appearing before their respective
competitors. In each case, the resulting similarity graph is a col-
lection of disconnected cliques of content that compares in similar
ways to their respective competitors, as illustrated in Figure 1.

3.3.2 Similarity Graph Convolution. Unlike the contrastive mod-
ification we introduce in Equation (2), we aim to identify feature
similarities among connected nodes rather than feature differences
or contrast. To enable feature smoothing for closely connected
nodes in the similarity graph, we transform Equation (1) with the
parameter inversion 𝜃 = 𝜃0 = −𝜃1 (as opposed to 𝜃 = 𝜃0 = 𝜃1 in
the contrastive case). The convolution for a specific vertex 𝑢 with
features X𝑢 in a similarity graph can then be given by (following
from Equation (1)),

𝑔𝜃 ∗ X𝑢 = 𝜃

(
I𝑁 + D−1/2AD−1/2

)
X𝑢 , (7)

Another common formulation in practice normalizes the sum
term,

(
I𝑁 + D−1/2AD−1/2

)
as D−1/2ÃD−1/2 where Ã = I𝑁 + A. How-

ever, this formulation results in oversmoothing by averaging all
neighbors of each node, including the node itself. For our discon-
nected clique graph, it results in all nodes within the same clique



receiving the same identical result, which is the average of all
embeddings in the clique. Thus, in Equation (7) we use the unnor-
malized sum term

(
I𝑁 + D−1/2AD−1/2

)
.

When we apply Equation (7) to modify each graph convolution
layer of a GCN, the output for the 𝑘𝑡ℎ layer can be given by:

Z𝑘G = 𝜎

((
I𝑁 + D−1/2AGD−

1/2
)
Z𝑘−1
G W𝑘

G

)
(8)

with AG denoting the adjacency matrix of similarity graph G ∈ GS ,
and all the other notations following from Equation (3).

Let us consider the effect of the convolution in Equation (8) for a
specific vertex 𝑢 with 𝑘 − 1𝑡ℎ layer embedding Z𝑘−1

G (𝑢). Unlike the
contrastive equation in Equation (4), Equation (8) computes Z𝑘G (𝑢)
as follows:

Z𝑘G (𝑢) = 𝜎
©­«©­«Z𝑘−1

G (𝑢) + 1
|N𝑢 |

∑
𝑣∈N𝑢

Z𝑘−1
G (𝑣)ª®¬W𝑘

G
ª®¬

= 𝜎

(( |N𝑢 | − 1
|N𝑢 | Z𝑘−1

G (𝑢) + |N𝑢 | + 1
|N𝑢 | 𝜇𝑘−1

G

)
W𝑘

G

)
(9)

where 𝜇𝑘−1
G is the average over all 𝑘 − 1𝑡ℎ layer embeddings in

the clique, including 𝑢. Unlike the feature difference computed by
Equation (6), the vertex embedding in the𝑘𝑡ℎ convolution layer now
aggregates the average of the previous layer neighbor embeddings
with the vertex instead of computing their difference, due to the
sign inversion in Equation (7).

When we analyze the above transformation analogous to Equa-
tion (5) by replacing 𝜎 (𝑦) = 𝛼𝑦 + 𝛽 in the non-saturated region, we
can easily verify that for vertices 𝑢 and 𝑣 in a clique of size 𝑛:

Z𝑘G (𝑢) − Z𝑘G (𝑣)︸             ︷︷             ︸
contrast in the current layer

= 𝛼 W𝑘
G︸︷︷︸

learned filter

(
1 − 1

𝑛 − 1

)
︸        ︷︷        ︸

shrinkage

×
(
Z𝑘−1
G (𝑢) − Z𝑘−1

G (𝑣)
)

︸                      ︷︷                      ︸
contrast in the previous layer

(10)

As a result, each convolutional layer with Equation (7) shrinks the
feature differences between vertices in the same clique. The learned
filters W𝑘

G have a progressively smaller impact on the embedding
displacements of connected vertices over embedding layers. This
enables identifying weighted feature similarities within a clique, as
opposed to weighted feature differences in Equation (6).

3.4 Reflexive Graph Convolution
3.4.1 Reflexive Graph. We construct the reflexive graph G ∈

GR with the set of all self-edges over the content nodes. We now
demonstrate how convolving the reflexive graph is equivalent to
learning a feedforward neural network classifier on the vertex
feature set.

3.4.2 MLP Equivalence. We construct the reflexive graph with
self-loops over all vertices, resulting AG = D = I𝑁 . Thus, applying

b) Contrastive c) Similarity by Comparisona) Reflexive

Figure 1: Reflexive, Contrastive and Similarity graphs among
category-post (𝑞, 𝑎) pairs. The reflexive graph considers only node
features, contrastive graphs connect competing content; similarity
graphs connect user content across different categories if they dif-
fer from their competitors similarly. Solid lines indicate similar-
ity, while dotted lines indicate contrast. The similarity graph in the
above example connects content in three out of four categories.
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Figure 2: Schematic diagram of our proposed IR-GCN model.

the similarity convolution layer defined in Equation (8),

Z𝑘𝑟 = 𝜎

(
2 ∗ I𝑁Z𝑘−1

𝑟 W𝑘
𝑟

)
(11)

The above reflexive convolution is equivalent to a feedforward neu-
ral network classifier with the same activation function (ignoring
the x2 scaling), transforming vertex features in isolation.

While the content graphs in GC and GS represent the contrasts
and similarities between user content, the reflexive graph enables
independent feature-based vertex embeddings. In the next section,
we describe our aggregation strategy to combine the vertex rep-
resentations across the three sets of graphs, GC , GS and GR to
compute the aggregate quality score for each content vertex.

4 CONTENT GRAPH AGGREGATION
The convolutional operators described in the previous section gen-
erate vertex embeddings for each contrastive graph via Equation (4),
similarity graphs via Equation (9), and the reflexive graph via Equa-
tion (11). We now describe a novel hierarchical aggregation ap-
proach to unify the vertex embeddings within each set of graphs,
i.e., GC , GS and GR . We then introduce a top layer to combine
per-vertex scores across the three sets, GC , GS and GR with a
complementary boosting approach. Our approach enables a vertex-
specific weighting of the three types of representations to estimate
the overall quality score.



4.1 Within-Set Graph Aggregation
The contrastive graphs G ∈ GC share structural similarities repre-
senting how competing content and categories are organized on
the platform. Analogously, the similarity graphs G ∈ GS share
correlated sub-structures across the similarity criteria, representing
user participation patterns on the platform.
Weight sharing: To facilitate the discovery of structural common-
alities in their respective vertex convolutions, we share the weight
parameters of the GCN layers (W𝑘

G) across all the graphs within the
same set. Thus, we only learn three distinct sets of convolutional
filter weights, one for graphs in GC (i.e., for Equation (4)), one for
graphs in GS (i.e., for Equation (9)), and one for the reflexive graph
in GR (i.e., for Equation (11)).

Further, we employ a simple alignment loss term ([43, 23]) to
align the learned vertex representations at the final convolutional
layer, i.e., Z𝐾G across the graphs within each set. This results in the
following two norm loss terms:

| |Z𝐾G − Z𝐾G′ | | ∀G,G′ ∈ GC, | |Z𝐾G − Z𝐾G′ | | ∀G,G′ ∈ GS (12)

We detail the overall loss function and training method in Algo-
rithm 2.
Score computation: For each graph G ∈ GC/GS/GR , we obtain
the 𝑑-dimensional vertex embeddings at the 𝐾𝑡ℎ layer of the re-
spective graph convolution operators (where 𝐾 denotes the last
convolution layer), Z𝐾G ∈ R𝑁𝑋𝑑 and compute a quality score by
multiplying Z𝐾G ∈ R𝑁𝑋𝑑 with graph-specific transform parameters
𝑊G ∈ R𝑑×1, corresponding to the dense layers in Figure 2.

The graph-specific scores are combined to compute three set-
level quality scores for each vertex, (HC,HS,HR ∈ R𝑁𝑋1),

HC =
∑

G∈GC
Z𝐾G𝑊G, HS =

∑
G∈GS

Z𝐾G𝑊G, HR =
∑

G∈GR
Z𝐾G𝑊G

(13)
Note that the third sum,

∑
G∈GR is trivial since there is only one

reflexive graph, while we may define multiple contrastive and simi-
larity graphs depending on the platform.
Algorithm 1 IR-GCN Boosted Score Computation

1: function Forward(X,Y, {𝐴G})
2: H𝑏 ← 0
3: for 𝑡 ∈ {C,S,R} do
4: {Z𝐾G}G∈G𝑡 ← 𝐶𝑜𝑛𝑣 (X, {𝐴G}G∈G𝑡 )
5: ⊲ Equation 3, 8, 11
6: H𝑡 =

∑
G∈G𝑡 Z

𝐾
G × W̃G ⊲ Equation 13

7: e𝑡 ← exp(−Y ⊙ H𝑏 )
8: ⊲ ⊙ → Hadamard Product

9: 𝛼𝑡 ← 1
2 ln

∑
e𝑡 ⊙ 1 ((Y ⊙ H𝑡 ) > 0)∑
e𝑡 ⊙ 1 ((Y ⊙ H𝑡 ) < 0)

10: ⊲
∑→ reduce-sum

11: ⊲ 1(.) → element-wise Indicator function
12: H𝑏 ← H𝑏 + 𝛼𝑡 ∗ H𝑡 ⊲ Update boosted score
13: end for
14: return H𝑏 , {H𝑡 }𝑡 ∈{C,S,R} , {Z𝐾G}G∈G𝑡
15: ⊲ Boosted scores, Set-level scores, Vertex representations
16: end function

Algorithm 2 IR-GCN Overall Training Algorithm
Input: Input Feature Matrix 𝑋 , Acceptance labels for each tuple,

Y, Adjacency matrices {𝐴G}∀G
Output: Trained Model i.e., Weight parameters 𝑊 1

G . . .𝑊
𝑘
G and

transform parameters𝑊G, ∀G, 𝑘 ∈ [1, 𝐾]
1: for 𝑛 ← 1 to num-epochs do
2: H𝑏 , {HC,HS,HR }, {Z𝐾G}∀G← Forward(𝑋,𝑌, {𝐴G}∀G)
3: ⊲ Algorithm 1
4: for 𝑡 ∈ {C,S,R} do
5: L𝑏 ←

∑
exp(−Y ⊙ H𝑏 ) + 𝛾1L1 (.) + 𝛾2L2 (.)

6: ⊲
∑→ reduce-sum

7: ⊲ ⊙ → Hadamard Product
8: L𝑡 ← 0
9: for G ∈ G𝑡 do

10: LG ←
∑

exp(−Y ⊙ H𝑡 )
11: L𝑡 ← L𝑡 + LG + 1

2
∑
G′≠G | |Z𝐾G′ − Z𝐾G | |

12: end for
13: L𝑏 ← L𝑏 + 𝜆(𝑛)L𝑡
14: for G ∈ G𝑡 do
15: 𝑊 𝑘

G ←𝑊 𝑘
G + 𝜂adam

𝜕L𝑏

𝜕𝑊 𝑘
G

⊲ ∀𝑘 ∈ [1, 𝐾]
16: 𝑊G ←𝑊G + 𝜂adam

𝜕L𝑏

𝜕𝑊G
17: end for
18: end for
19: end for

4.2 Cross-Set Aggregation
In contrast to the within-set similarities that we model in Equa-
tion (12), the set-level quality scores for a given vertex 𝑢, i.e.,HC (𝑢)
(contrast score),HS (𝑢) (similarity score) andHR (𝑢) (reflexive/feature
score) represent different facets of the vertex. Gradient boosting
techniques are known to improve performance when individual
classifiers, including neural networks [29], are accurate on differ-
ent subsets or facets of data entities. A natural solution then is
to apply boosting to the three set-level scores to bridge the weak-
nesses of each set. We employ Adaboost [9] to compute boosted
scores, H𝑏 ∈ R𝑁×1 over the three sets of graphs (Line 12,algo-
rithm 1). While the three set-level scores in Equation (13) act as
independent regressors for each vertex with weight parameters
𝑊G (Equation (13)) on the underlying content graphs, the adaboost
coefficients 𝛼C , 𝛼S and 𝛼R (Line 9, Algorithm 1) weight the three
set-level scores in Line 12, Algorithm 1 to generate the aggregate
boosted score H𝑏 . Quality score H𝑏 is then used to rank competing
posts under each category in our experiments.

As stated in Section 2, we employ the ground truth acceptance
or verification labels for posts in each category, Y ∈ R𝑁𝑋1 (+1 for
(𝑞, 𝑎) category-post pairs, -1 for the rest) to estimate the Adaboost
coefficients for the set-level scores. The entries of the element-
wise product of the label and the three set-level scores in Line
9, Algorithm 1, Y ⊙ H𝑡 are positive for content vertices where
𝑠𝑖𝑔𝑛(H𝑡 ) matches the ground truth label Y, and thus independently
weight each set-level score for each vertex.

4.3 Overall Training Algorithm
Algorithm 2 describes the overall training algorithm for our IR-
GCN model. In each training epoch, we first compute the boosted



Table 1:Dataset statistics for the three largest Stack Exchanges across all five domains. |𝑄 |: number of questions; |A |: number of answers; |𝑈 |:
number of users; 𝜇 ( |A𝑞 |) : mean number of answers per question. The professional/business domain has slightly more answers per question
on average. Technology exhanges typically have the largest number of question among the five domains.

Technology Culture/Recreation Life/Arts Science Professional/Business

ServerFault AskUbuntu Unix English Games Travel SciFi Home Academia Physics Maths Statistics Workplace Aviation Writing

|𝑄 | 61,873 41,192 9,207 30,616 12,946 6,782 14,974 8,022 6,442 23,932 18,464 13,773 8,118 4,663 2,932
|A | 181,974 119,248 33,980 110,235 45,243 20,766 49,651 23,956 23,837 65,800 53,772 36,022 33,220 14,137 12,009
|𝑈 | 140,676 200,208 84,026 74,592 14,038 23,304 33,754 30,698 19,088 52,505 28,181 54,581 19,713 7,519 6,918
𝜇 ( |A𝑞 |) 2.94 2.89 3.69 3.6 3.49 3.06 3.31 2.99 3.7 2.75 2.91 2.62 4.09 3.03 4.10

prediction scores H𝑏 , as described in algorithm 1. We then compute
the overall exponential loss L𝑏 (Line 5, algorithm 2),

L𝑏 ←
∑

exp(−Y ⊙ H𝑏 ) + 𝛾1L1 (.) + 𝛾2L2 (.) (14)

where the L1 and L2-norm regularizers (L1, L2) are computed over
the weight parameters, W𝑘

G, ∀G, 𝑘 . Note that we employ weight
sharing within each set of graphs.

The within-set exponential losses for the three sets, GC,GS,GR
(Line 9-12,algorithm 2) are alternatingly optimized with L𝑏 . We ap-
ply an exponential annealing schedule, 𝜆(𝑛) over training epochs (𝑛)
to dampen the within-set losses in later training epochs. Annealing
ensures a robust allocation of the Adaboost coefficients among the
set-level scores for each vertex.

5 EXPERIMENTS
This section describes our dataset, experimental setup, baselines,
evaluation metrics, and implementational details. We present a
wide range of quantitative and qualitative experimental results to
validate our approach. Our implementations are available here3.

5.1 Dataset
We validate our approach on all large Stack-Exchange Q&A websites
across all five discussion domains, Technology (T), Culture/Recreation
(C), Life/Arts (L), Science (S) and Professional (P). Specifically, we
collect the ten largest Stack-Exchanges as of March 2019 in each
of the five domains (Table 1). Note that categories are represented
by questions in each Stack-Exchange and posts by user-generated
answers to the respective questions.

5.1.1 Content Graph Creation: We now describe the contrastive,
similarity, and reflexive content graph construction for each Stack-
Exchange. The set of all question-answer pairs in a given Stack-
Exchange constitutes the content graphs vertices, while the edge
set differs across the graphs.
Contrastive graph creation: In each Stack-Exchange, we create a
single contrastive graph GC, i.e., contrastive graph set, GC = {GC}.
For each question 𝑞 ∈ Q, we inter-connect competing answers
𝑎 ∈ A𝑞 . Thus, GC is a graph of disconnected cliques as described in
Section 3.2.1 with one clique per question on the Stack-Exchange.
Similarity graph creation: For each Stack-Exchange, we create
two similarity graphs with two different similarity criteria, moti-
vated by prior work [36] demonstrating the importance of the user
skill and relative arrival times of answers on Q&A for accepted
answer prediction:

TrueSkill similarity graph GTS connects answers where the
author skills differ by a similar margin 𝛿 = 4 against competing

3https://github.com/CrowdDynamicsLab/IRGCN

authors, i.e., when the authors are equally less or more skilled than
their competitors. We compute author skill via Bayesian TrueSkill [12].

Arrival similarity graph GAS connects answers to different
questions based on their relative arrival times against competitors,
e.g., answers that both arrive more than a 𝛿 = 0.95 fraction of a day
before their respective competing answers. We chose 𝛿 values via
aprior statistical analysis of the datasets. Thus, the similarity graph
set is given by GS = {GTS,GAS}.
Reflexive Graph Creation For each Stack-Exchange, we create a
single reflexive content graph GR with every vertex connected to
itself, i.e., GR = {GR}.

5.1.2 Graph vertex features: We input the following node fea-
tures for each (𝑞, 𝑎) pair (vertex) to the first convolutional layers:
Activity features : View count of the question, number of com-
ments for both question and answer, the difference between posting
time of question and answer, arrival rank of answer (we assign value
1 to the first posted answer, and 0 to the rest) [32].
Text features : Paragraph and word count of question and answer
body and question title, presence of code snippet in question and
answer (useful for programming based forums)
User features : Word counts in the Aboutme profile sections for
the user posting the question and the user posting the answer.

Time-dependent features such as answer upvotes/downvotes,
user reputation, or user badges ([2]) are problematic since we only
know the aggregate values, not their specific change with time.
Second, since these values typically increase over time, it is unclear
if an accepted answer receives votes before or after it was accepted.
We discard these time-dependent features in our experiments.

5.2 Experimental Setup
5.2.1 Baselines. We pick diverse state-of-the-art baselines (Ta-

ble 2) to incorporate relation-agnostic feature embedding methods,
multi-relational approaches to fuse content graphs [43, 28], gener-
ate text embeddings via LSTMs [30], a text-based extension of our
model, and variants of our model with different content graphs and
aggregation strategies.
Random Forest (RF) [2, 32] trains on the feature set described in
section 5.1 on each Stack-Exchange.
Feed-Forward network (FF) [13] learns non-linear transforma-
tions of the feature vectors for each (𝑞, 𝑎) pair, and is equivalent to
our reflexive graph convolution model.
Relational GCN (RGCN) [28] fuses the vertex embeddings across
the different content graphs in each convolutional layer to compute
an aggregated input (referred as early fusion in Table 2).
Dual GCN (DGCN) [43] trains a separate GCN for each graph and
regularizes the output representations (referred as late fusion in
Table 2).



Table 2: Method summary. Graph convolutional approaches do not learn isolated vertex representations (we address this via reflexive con-
volution). Early fusion methods tightly couple convolutional layers for multiple graphs in contrast to final layer aggregation.

Methods Models Contrast Models Similarity Incorporates Text Isolated Vertex
Representation

Early vs. Late Relation
Embedding Fusion

Feature-based Models

RF, FF [2, 13] No No No Yes NA

Multi-Relational Graph Models

RGCN [28] No Yes No No Early Fusion
DGCN [43] No Yes No No Late Fusion

Text Embedding Model

QA-LSTM/CNN [30] No No Learns word embeddings NA NA

Our Model Variants

IR-GCN Yes (C-GCN) Yes (AS-GCN, TS-GCN) No Yes (R-GCN) Late Fusion
IR-GCN + T-GCN Yes (C-GCN) Yes (AS-GCN, TS-GCN) Text similarity graph, T-GCN Yes (R-GCN) Late Fusion

QA-LSTM/CNN [30] applies stacked bidirectional LSTMs followed
by convolutional filters to embed the question and answer text, fol-
lowed by cosine-similarity ranking.
IR-GCN Our model with all three types of graphs (contrastive,
similarity, reflexive) described in Section 5.1, and the aggregation
strategy in Section 4.
IR-GCN + Textual Similarity (T-GCN) We incorporate a textual
similarity graph that connects answers that exhibit a similar cosine
similarity value with their respective question text, based on the
learned text representations from the QA-LSTM approach. The
textual similarity graph is included as the third similarity graph in
addition to the Arrival and TrueSkill graphs.
Individual GCN: We also enlist the performance results of each
GCN model in isolation, i.e., C-GCN for Contrastive graph, TS-
GCN for Trueskill similarity graph, AS-GCN for Arrival time simi-
larity graph. As the reflexive graph is equivalent to FF (Section 3.4),
we do not separately enlist results of R-GCN.
Neural Aggregators [11, 40, 6] In Section 5.4, we compare our
aggregation strategy in Section 4 against common neural aggrega-
tion architectures to merge vertex embeddings across the content
graphs.
• Neighborhood Aggregation: This approach embeds ver-

tices by aggregating the embeddings of its neighbors over
all content graphs [11, 28].
• Stacking: Multiple graph convolution layers stacked side-

to-side, each handling a different content graph [40].
• Fusion: Follows a multi-modal fusion approach [6], where

graphs are treated as distinct data modalities.
• Shared Latent Structure: Transfers knowledge across con-

tent graphs with embedding norm penalties (e.g., [43]).

5.2.2 EvaluationMetrics. We randomly construct a test question-
set T𝑞 ⊂ Q with 20% questions on each Stack-Exchange, and eval-
uate the acceptance labels of test (𝑞, 𝑎) pairs T = {(𝑞, 𝑎)} where
𝑞 ∈ T𝑞 . Specifically, we train the model with the non-test (𝑞, 𝑎) pairs
and their acceptance labels and evaluate on two metrics: Accuracy
to measure how often our top-scored answer for each test ques-
tion matches the ground truth, and Mean Reciprocal Rank (MRR)
to measure the predicted positions of the accepted answers for
each test question [35]. Note that accuracy is averaged over all test

(𝑞, 𝑎) pairs T = {(𝑞, 𝑎)}, while MRR is averaged over the set of test
questions, T𝑞 .

5.2.3 Implementation Details. We implemented all models with
the PyTorch framework, and trained with the ADAM optimizer
[14] and 50% dropout. We use four hidden layers in each GCN with
hidden dimensions [50, 10, 10, 5] and ReLU activations. The L1 and
L2 coefficients were set to 𝛾1 = 0.05 and 𝛾2 = 0.01. For TrueSkill
similarity, we use margin 𝛿 = 4, while for Arrival similarity, we use
𝛿 = 0.95 based on apriori data analysis. We construct question-based
mini-batches for parallelized training, owing to the disconnected
clique structure of our graphs.

5.3 Performance Analysis
We show significant gains (Table 3) of around 5% relative accuracy
and 3% relative MRR over state-of-the-art baselines across all five
domains. We report mean results in each domain via 5-fold cross-
validation on each Stack-Exchange. Note that MRR only measures
the accepted answer rank. At the same time, accuracy considers
both, accepted and unaccepted answers, indicating that our model
achieves a balanced performance gain across both positives and
negatives. Our results also show significantly less variance than the
competing baselines, indicating more stable performance across
questions and datasets.

Among the multiple individual graph variants of our model,
C-GCN consistently achieves the highest performance on each
Stack-Exchange, indicating the importance of feature contrast in-
stead of feature smoothing. C-GCN outperforms the best baseline
DGCN despite only convolving one of the four induced graphs.
The contrastive graph compares the feature representations of can-
didate answers to each question with our proposed contrastive
convolution approach, thus identifying the most prominent and
indicative feature differences between accepted answers and their
competitors. The AS-GCN model’s strong performance shows that
early answers tend to get accepted, and conversely, late ones do
not. The reflexive graph predicts vertex labels independent of other
answers to the same question. Thus, the performance of R-GCN
measures the utility of the vertex features in isolation. TrueSkill
similarity (TS-GCN) performs at par or slightly below R-GCN, but
is significantly outperformed by AS-GCN and C-GCN. As expected,



Table 3: Accuracy and MRR values for StackExchanges vs. state-of-the-art baselines. Our model leads by around 5% accuracy and 3% MRR
relative to the baselines. Contrastive GCN performs best among the strategies. The second-best model is marked with the ∗ symbol in each
column. Our gains are statistically significant at 0.01 over the second-best model on a single tail paired t-test.

Method Technology Culture/Recreation Life/Arts Science Professional/Business
Acc MRR Acc MRR Acc MRR Acc MRR Acc MRR

RF [2, 32] 0.668 ± .02 0.683 ± .04 0.725 ± .02 0.626 ± .05 0.727 ± .05 0.628 ± .09 0.681 ± .02 0.692 ± .05 0.747 ± .04 0.595 ± .08
FF [13] 0.673 ± .03 0.786 ± .02 0.722 ± .02 0.782 ± .02* 0.736 ± .05 0.780 ± .03 0.679 ± .02 0.800 ± .03 0.746 ± .04 0.760 ± .05
DGCN [43] 0.707 ± .02 0.782 ± .02 0.752 ± .02 0.772 ± .03 0.767 ± .03 0.784 ± .04 0.714 ± .02* 0.792 ± .04 0.769 ± .03 0.751 ± .05
RGCN [28] 0.544 ± .05 0.673 ± .05 0.604 ± .02 0.646 ± .04 0.597 ± .04 0.655 ± .05 0.586 ± .05 0.683 ± .04 0.632 ± .04 0.657 ± .06

AS-GCN 0.678 ± .03 0.775 ± .02 0.730 ± .02 0.763 ± .03 0.738 ± .05 0.777 ± .04 0.669 ± .05 0.788 ± .03 0.749 ± .05 0.742 ± .05
TS-GCN 0.669 ± .03 0.779 ± .02 0.722 ± .02 0.764 ± .02 0.720 ± .06 0.766 ± .05 0.659 ± .04 0.790 ± .03 0.742 ± .05 0.747 ± .04
C-GCN 0.716 ± .02* 0.790 ± .02* 0.762 ± .02* 0.781 ± .02 0.774 ± .03* 0.788 ± .04* 0.708 ± .04 0.800 ± .03* 0.776 ± .04* 0.768 ± .03*
IR-GCN 0.739 ± .02 0.794 ± .02 0.786±0.02 0.791±0.03 0.792±0.03 0.800±0.04 0.749 ± .02 0.809 ± .03 0.802 ± .03 0.785 ± .03

the boosted graph aggregation model in IR-GCN outperforms the
other variants, indicating the boosting approach’s efficacy.
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Figure 3: The t-stochastic neighbor embedding (t-SNE) [33] plot
of our vertex representations clearly show the effect of our boosted
aggregation approach. Each GCN learns a clearly demarcated facet
of the vertex data and hence occupies a different part of the repre-
sentation space (Chemistry StackExchange).

5.3.1 Qualitative Analysis. Figure 3 presents t-SNE distributions
[33] of the learned vertex embeddings (Z𝐾

𝑖
) of each GCN model

when applied to the Chemistry Stack-Exchange (Science domain).
Note that each GCN learns a sharply demarcated and distinct vertex
embedding, owing to our boosting approach. Hence, all content
graphs are essential to our final model performance.

5.3.2 DGCN vs. RGCN. Among the baseline graph ensemble
approaches, DGCN performs significantly better than RGCN by
an average relative difference of 26% for all domains. In the RGCN
model, the semantically diverse embeddings of each GCN are lin-
early concatenated to compute outputs. Concatenation works well
for knowledge graphs where each projected graph represents an
aspect, thus accumulating information from each aspect. However,
DGCN trains separate GCN models for each content graph and
later merges their results via norm regularization instead of early
fusion in RGCN.

5.3.3 DGCN vs. IR-GCN. DGCN incentivizes final-layer similar-
ity in vertex representations learned by each GCN. This restriction
is counterproductive with semantically diverse graphs. In contrast,
we apply final-layer norm alignments separately within each set
and not across all content graphs simultaneously, thus accounting
for semantically diverse sets of graphs.

Method Tech Culture Life Sci Bus

QA-LSTM/CNN[30] 0.665 0.717 0.694 0.629 0.726
T-GCN 0.692 0.738 0.764 0.678 0.771
IR-GCN 0.739 0.786 0.792 0.749 0.802
IR-GCN + T-GCN 0.739 0.780 0.811 0.745 0.789

Table 4: 5-fold accuracy comparison for the text-based methods
QA-LSTM and T-GCN against IR-GCN.

5.3.4 Comparing against textual features. Our T-GCN extension
outperforms QA-LSTM by significant margins as shown in Table
4. Since we use the embeddings learned by QA-LSTM to construct
the T-GCN graph, we effectively improve performance simply by
connecting similar answers across different questions. Connecting
similar answers enables cross-question information sharing, thus
improving performance. However, adding the T-GCN to IR-GCN
does not lead to improvements. The similarity graphs based on the
user features (Arrival and TrueSkill) do not benefit from alignment
with the textual similarity graph.

5.4 Aggregator Architecture Variants

Method Tech Culture Life Sci Bus

Stacking [40] 0.686 0.744 0.792 0.703 0.755
Fusion [6] 0.723 0.772 0.808 0.739 0.790
NeighborAgg [11, 28] 0.693 0.743 0.779 0.684 0.786
IR-GCN 0.739 0.787 0.816 0.748 0.806

Table 5: 5-fold Accuracy (in %) comparison of different aggrega-
tor architectures. Most architectures underperform our Contrastive
GCN despite using all the 4 graphs. Fusion performs similarly, but
is computationally expensive.

We compare our gradient boosting aggregation approach against
other popular methods to merge convolutional neural represen-
tations, described in section 5.3. We conducted this study on the
largest Stack-Exchanges in each of the five domains, i.e., Server-
Fault (Technology), English (Culture), Science Fiction (Life), Physics
(Science), Workplace (Business). Table 5 shows that C-GCN alone
outperforms aggregator variants (which use all the 4 graphs) with
Fusion being the best baseline. These results reaffirm that neural
aggregation methods are not suited to combine semantically di-
verse content graph vertex embeddings. The fusion approach is also
computationally expensive since the inputs and parameter sizes
scale with the number of graphs.
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Figure 4: Accuracy of our IR-GCN model compared to the FF
model with varying clique size (i.e. number of answers to a question,
|A𝑞 |) for C-GCN. We report averaged results over the largest Stack-
Exchange in each domain. Our model performs much better for
smaller cliques, and the effect diminishes for larger cliques (eq. (3)).
80% questions comprise small cliques (< 4 answers).

5.5 Discriminative Magnification effect
We show that our contrastive convolution operation achieves Dis-
criminative Magnification (eq. (3)) to classify vertices. Figure 4 com-
pares IR-GCN to the FeedForward (FF) approach across vertex
cliques of varying sizes. Since the FF approach predicts node la-
bels independent of other nodes, it is not impacted by the clique
sizes. However, our magnification effect scales with the clique size
as (1 + 1/𝑛 − 1) (eq. (3)), resulting in stronger accuracy gains for
smaller cliques (25% avg relative gain for |A𝑞 | = 2 and 7% for
|A𝑞 | = 3). Thus, our model significantly outperforms the FF model
for questions with fewer candidate answers. Further, 80% of the
Stack-Exchange questions have fewer than four answers, resulting
in significant overall gains.

5.6 Content Graph Ablation Study
We present the results of an ablation study with different graph
combinations, C-GCN, AS/TS-GCN, and R-GCN in Table 6. We
observe that the isolated variants underperform the unified ones,
indicating the importance of cross-relation boosted combinations.
Training contrastive and similarity graphs together in our boosted
framework performs similar to our final model. This indicates that
R-GCN is not very informative when contrast and similarity are in-
cluded, since feature contrast and feature smoothing jointly account
for most feature variations across nodes. As mentioned previously,
C-GCN outperforms all the other individual content graphs, under-
scoring the importance of feature contrast. The ability to contrast
or identify (as opposed to smoothing/aggregating) the distinguish-
ing features of accepted answers against their competitors proves
critical to the final classification result.
{ Graphs} Tech Culture Life Sci Bus

C-GCN 0.712 0.759 0.787 0.730 0.768
{TS, AS}-GCN 0.679 0.742 0.757 0.658 0.761
R-GCN 0.683 0.734 0.766 0.674 0.758
{TS, AS}-GCN + R-GCN 0.693 0.755 0.764 0.701 0.779
C-GCN + R-GCN 0.730 0.776 0.802 0.737 0.800
C-GCN + {TS, AS}-GCN 0.728 0.780 0.814 0.722 0.802
IR-GCN (all) 0.739 0.787 0.816 0.746 0.806

Table 6: 5-fold Accuracy(in %) comparison of different combina-
tions of content graphs in our overall approach. Contrastive and
similarity graphs combined perform similar to the final model.

6 RELATEDWORK
Our work intersects multiple broad research threads connected to
content selection and multi-relational graph convolution. In the
context of user-generated content (primarily in discussion fora),
prior content selection literature primarily includes feature-based
models and deep text models.
Feature-basedModels identify and incorporate user features, text
content features, and thread features, e.g., in tree-based models,
to identify the best answer. Tian et al. [32] found that the best
answer tends to be early and novel, with more details and comments.
Jenders et al. [13] trained classifiers for online forums, Burel et al.
[2] emphasize the Q&A thread structure.
Deep Text Models learn question/answer text representations
to rank answers [41, 37, 34]. Feng et al. [7] augment CNNs with
discontinuous convolution for improved representations; Wang et
al. [30] use stacked biLSTMs to match question-answer semantics.
Graph Convolution is applied in spatial and spectral domains
to compute graph vertex representations for downstream tasks
including classification [15], link prediction [28], multi-relational
tasks [27] etc. Spatial approaches employ random walks or k-hop
neighborhoods to compute vertex representations [22, 10, 31] while
fast localized convolutions are applied in the spectral domain[3, 5].
Our work is inspired by spectral Graph Convolution [15], which
outperforms spatial convolutions and scales to larger graphs. GCN
extensions have been proposed for signed networks [4], motif-
structures [25], inductive settings [11], multiple relations [43, 28]
and diffusion [26]. However, GCN variants assume feature smooth-
ing, which cannot model vertex feature contrast.
Multi-Relational Fusion: Fusing relation data modalities for
joint representation is a well studied problem [1]. A few closely
related threads include adversarial approaches to integrate social
neighbor data [16, 17]; meta-learning to adapt across tasks [8, 18].
In contrast to these approaches, we emphasize the flexibility and
simplicity of our multi-relational graph formulation for modeling
the relational aspects of user-generated content.

7 CONCLUSION
This paper leverages the relational aspects of user-generated con-
tent to provide holistic content ranking on online platforms. We
developed a novel induced relational graph convolution frame-
work (IR-GCN) to address this question in a platform-agnostic man-
ner. We made three contributions. First, we incorporate platform-
specific criteria to induce content graphs representing relational
aspects of user content and identify three broad platform-agnostic
graph semantics to classify them. Second, we developed convolu-
tional operators to efficiently achieve feature sharing and feature
contrast across these induced content graphs. Our novel contrastive
architecture achieves Discriminative Magnification between com-
peting vertices.

Finally, we developed a hierarchical aggregation framework to
integrate these graphs and outperform a wide range of neural ag-
gregators on the Answer Selection task in fifty Stack-Exchanges.
We identify two main threads to extend our work: developing a
more nuanced classification beyond contrast and similarity and
extending our aggregation strategy’s critical concepts to a broader
range of content search and ranking problems.
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