
ProtoCF: Prototypical Collaborative Filtering for Few-shot
Recommendation

Aravind Sankar∗
asankar3@illinois.edu
University of Illinois at
Urbana-Champaign

Illinois, USA

Junting Wang∗
junting3@illinois.edu
University of Illinois at
Urbana-Champaign

Illinois, USA

Adit Krishnan
aditk2@illinois.edu

University of Illinois at
Urbana-Champaign

Illinois, USA

Hari Sundaram
hs1@illinois.edu

University of Illinois at
Urbana-Champaign

Illinois, USA

ABSTRACT

In recent times, deep learning methods have supplanted conven-
tional collaborative filtering approaches as the backbone of modern
recommender systems. However, their gains are skewed towards
popular items with a drastic performance drop for the vast col-
lection of long-tail items with sparse interactions. Moreover, we
empirically show that prior neural recommenders lack the resolu-
tion power to accurately rank relevant items within the long-tail.

In this paper, we formulate long-tail item recommendations as
a few-shot learning problem of learning-to-recommend few-shot
items with very few interactions. We propose a novelmeta-learning
framework ProtoCF that learns-to-compose robust prototype rep-
resentations for few-shot items. ProtoCF utilizes episodic few-shot
learning to extract meta-knowledge across a collection of diverse
meta-training tasks designed to mimic item ranking within the
tail. To further enhance discriminative power, we propose a novel
architecture-agnostic technique based on knowledge distillation
to extract, relate, and transfer knowledge from neural base recom-
menders. Our experimental results demonstrate that ProtoCF con-
sistently outperforms state-of-art approaches on overall recom-
mendation (by 5% Recall@50) while achieving significant gains (of
60-80% Recall@50) for tail items with less than 20 interactions.

KEYWORDS

Recommendation System, Collaborative Filtering, Meta Learning,
Few-shot learning.
ACM Reference Format:

Aravind Sankar, Junting Wang, Adit Krishnan, and Hari Sundaram. 2021.
ProtoCF: Prototypical Collaborative Filtering for Few-shot Recommendation.
In Fifteenth ACMConference on Recommender Systems (RecSys ’21), September
27-October 1, 2021, Amsterdam, Netherlands. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3472456.3473511

1 INTRODUCTION

Neural Collaborative Filtering (NCF) methods have recently en-
abled substantial advances in modern recommender systems that
∗Equal contribution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9068-2/21/08. . . $15.00
https://doi.org/10.1145/3472456.3473511

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
Item groups (increasing popularity)

0.0

0.1

0.2

0.3

0.4

Ite
m

 R
ec

al
l@

50

NCF
VAE-CF
CDAE

0

50

100

150

200

Av
g.

 in
te

ra
ct

io
ns

 p
er

 g
ro

up

Figure 1: Item Recall@50 of three neural recommenders for

item-groups (increasing popularity) in Epinions. Model per-

formance is considerably lower for long-tail items.

are critical to diverse e-commerce applications. However, a close ex-
amination of neural recommenders’ performance reveals a paradox:
while the overall recommendation accuracy is high, accuracy levels
are poor for most items in the inventory. Amajority of recommenda-
tions are biased towards popular items [3], while ignoring long-tail
items in under-represented categories. Popularity bias restricts per-
sonalization and impedes suppliers of long-tail items, who struggle
to attract consumers given the low exposure. Targeting long-tail
items can enhance diversity and bring relatively larger marginal
profits. The increasing impact of recommendations (e.g., 80% of Net-
flix activity is a result of recommendations [30]), also raises ethical
questions: can items that are never recommended by a system be
considered an instance of discrimination [14]? Thus, we focus on
learning robust models for long-tail item recommendations.

Empirical evidence of long-tail challenges: We highlight
two key observations on prior neural models [12, 24, 51]:

• Performance gains are skewed towards popular items with abun-
dant historical interactions. Figure 1 depicts Item Recall@K
(fraction of correctly ranked items within top-K) of three neural
recommenders for different item-groups ordered by increasing

Item Subset Top 50% Items Bottom 50% Items

Metric N@50 R@50 N@50 R@50

NCF [12] 0.0906 0.1874 0.0352 0.0973
VAE-CF [24] 0.1055 0.2106 0.0457 0.1125
CDAE [51] 0.1050 0.2102 0.0471 0.1149

Table 1: Recommendation performancewithin top-50%head
and bottom-50% tail items by item popularity on Epinions.

R@50 and N@50 denote Recall@50 and NDCG@50 metrics.

We observe poor ranking resolution within the long-tail.

https://doi.org/10.1145/3472456.3473511
https://doi.org/10.1145/3472456.3473511

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Sankar, et al.

item interaction count. Performance is considerably lower for
long-tail items (low popularity), indicating a clear popularity bias.

• Prior recommenders lack the resolution power to accurately rank
relevant items within the long-tail. To show this, we split the item
inventory into two equal-sized sets by interaction count (popular
and long-tail), and evaluate personalized ranking independently
within each set. Table 1 shows a big performance gap between
ranking within the popular and long-tail item sets.

Prior efforts towards the long-tail have been two-fold. First, reg-
ularizing an existing recommender via inter-item associations (de-
rived from item co-occurrences) [4, 19, 23, 54] or distributional
priors over the latent space [15, 24]. While regularization strate-
gies can partially alleviate overfitting, they typically involve static
hypotheses that may be counter-productive for massive invento-
ries with a diverse collection of long-tail items. Second, incorpo-
rating external side information [22], e.g., item attributes [7] and
knowledge graphs [47] to overcome sparsity. Note that exploiting
side information is typically application-dependent, thus lacking
generalizability to diverse scenarios. In contrast, we exploit the
capabilities of any neural base recommender for long-tail item
recommendation without access to side information.

Learning a latent space tailored to long-tail items poses two key
challenges: first, sparsity and heterogeneity: although tail items have
sparse interactions, they belong to diverse item categories; we need
sufficient resolution power to learn discriminative representations
for tail items, while being careful to avoid overfitting. Second, distri-
bution mismatch between head items (substantial interactions) and
tail items (sparse interactions). Specifically, neural recommenders
typically sample user-item pairs from the overall interaction dis-
tribution (biased to head items) for model training; this results in
overfitting and degenerate representations for tail items.

Present Work: To overcome item interaction sparsity, we ex-
tract, relate, and transfer the knowledge learned by a neural base
recommender over head items, to learn robust and discriminative
tail item representations. We eliminate the distribution inconsis-
tency between head and tail items with an episodic few-shot learning
setup [33] to simulate the distribution of tail items during model
training by sub-sampling interactions from data-rich head items.

We present a novel metric-based few-shot learning frame-
work ProtoCF for long-tail item recommendation. First, we pre-
train a base recommender to extract preferences over head items
and item-item relationships. Then, we design a few-shot recom-
mender that learns a shared metric space of users and items by ex-
tracting meta-knowledge across a collection of meta-training tasks
designed tomimic long-tail item recommendation. ProtoCF learns-
to-compose a representative prototype for each item from a small set
of user interactions and recommends relevant items by finding the
nearest prototypes to each user. To transfer knowledge from the
base recommender, we introduce a knowledge distillation strategy to
distill the discovered item-to-item relationships into a compact set
of group embeddings; we compose discriminative item prototypes
via learnable mixtures of group embeddings. We summarize our
key contributions below:

• Few-shot Item Recommendation: To our knowledge, ours is
the first to formulate long-tail item recommendation as learning-
to-recommend items with few interactions. We eliminate the
distribution mismatch between head and tail items via episodic

few-shot learning. Our problem formulation applies to diverse
scenarios without requiring side information.

• Discriminative Prototype Learning: We learn to compose dis-
criminative prototypes for tail items from their sparse interactions.
Unlike prior gradient based meta-learning for cold-start scenar-
ios [20, 27, 46], our item prototypes directly cluster the interacted
users in ametric space, which avoids expensive online adaptation.

• Architecture-agnostic Knowledge Transfer: We enhance
item prototypes by knowledge transfer from neural base rec-
ommenders. In contrast to layer transfer or adaptation meth-
ods [18], our knowledge distillation strategy extracts a compact
representation of the item relationships discovered by arbitrary
base recommenders. Significantly, ProtoCF is complementary to
advances in base recommenders and enables flexible adaptation
to the tail.

We instantiate ProtoCF by transferring meta-knowledge from
three base recommenders. Our experiments show that ProtoCF out-
performs state-of-the-art baselines (by 5% Recall@50) in overall
recommendation, with notably significant few-shot gains (of 60-80%
Recall@50) on tail items with less than 20 training interactions.

2 RELATEDWORK

We briefly review a few related lines of work relevant to long-tail
item recommendations with interaction sparsity.

Neural Collaborative Filtering: The core paradigm of latent-
factor CF models is to parameterize users and items with latent
representations learned from historical user-item interactions. Re-
cent neural recommenders enhance the representational capacity
of CF models via non-linear latent representations [24, 51], neu-
ral interaction modeling [12, 42], and graph-based representation
learning [48]. While these neural models learn expressive models
to significantly outperform conventional CF approaches, sparsity
concerns owing to long-tail items remain a critical challenge.

Sparsity-aware Recommendation: Clustering is one popular
way to address interaction sparsity by modeling group-level behav-
iors; early methods generate recommendations for tail items at the
granularity of item clusters [32], e.g., cluster-based smoothing [53],
user-item co-clustering [52] and joint clustering and CF [29]. How-
ever, clustering in the presence of skew can lead to uninformative
results [2] and degrades the extent of personalization.

Recent techniques leverage item-item co-occurrence statistics and
distributional priors to regularize latent-factor CF methods. One
common approach is regularization of recommenders, e.g., factoriza-
tion of an item co-occurrence matrix that shares latent factors with
a CF model [4, 23]. Variational auto-encoders (VAEs) [15, 24, 37]
employ Gaussian priors as regularizers on the representational
space to handle sparsity. Another strategy to alleviate sparsity is
data augmentation for items (or users) in the tail via adversarial
regularization [19] or rating generation [5, 6] techniques. However,
regularization techniques typically impose static hypotheses with
restrictive assumptions, while adversarial learning is computation-
ally expensive and does not scale to massive inventories.

Cold-start recommendation is a related problem that targets new
users or new items with no historical interactions. In such a sce-
nario, models rely on auxiliary information, e.g., user profiles [20],
item content [7], social connections [17, 35, 36], and knowledge
graphs [47]. An effective strategy is randomized feature dropouts

ProtoCF: Prototypical Collaborative Filtering for Few-shot Recommendation RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

to enable generalization to missing inputs [45, 57]. In contrast, we
focus on few-shot recommendations over long-tail items with very
few interactions, without any auxiliary information.

Few-shot Learning: designing models capable of learning new
tasks rapidly given a limited number of training examples. Here, the
meta-learning (learning to learn) paradigm has achieved consider-
able success in several domains including computer vision [38, 44],
natural language [10], and data mining [20, 43].

A few recent methods adapt meta-learning to cold-start rec-
ommendation [28]. Prior work have examined gradient-based pa-
rameter [8, 20, 27, 46, 56] and hyper-parameter initialization [9],
and layer sharing with user-specific (or item) parameter adapta-
tion [43, 50, 55]. However, these methods mostly address the cold-
start (zero-shot) scenario with side information, thus inapplicable to
our general setting of recommendation given limited interactions.

Our work is conceptually related to metric-learning approaches
[38, 39, 44] for few-shot learning, which learn-to-learn a metric
space that generalizes to new tasks without any need for adaptation.
A few recent explorations address task heterogeneity [40] in few-
shot classification settings, by designing architectures for explicit
knowledge transfer from data-rich classes [21, 26, 49] to construct
few-shot classifiers. However, such techniques are suited to learning
classifiers from a limited number of classes, hence cannot scale to
handle massive item inventories in recommendation applications.
To our knowledge, ours is the first investigation of metric-based
few-shot learning for long-tail item recommendations.

3 PROBLEM DEFINITION

We consider the implicit feedback setting (only clicks, no explicit
ratings) with a user setU, an item set I, and a binaryU × I user-
item interaction matrix X . Let Ni denote the set of all users who
have interacted with item i ∈ I. Prior neural recommenders learn a
scoring function f (i | u,X), i ∈ I personalized to each user u ∈ U

for item ranking over I. From Table 1, we find their performance
for tail items (bottom 50%) to be significantly inferior to head items
(upper 50%). Thus, our focus is to develop personalized recom-
menders tailored to the long-tail items (with sparse interactions),
while ensuring reasonable performance over the entire item set I.

Problem (Long-Tail Item Recommendation). Given user-item
interaction matrix X , learn a scoring function fT (i | u,X), i ∈ I

to generate a ranked list of items personalized to each user u ∈ U

that improves recommendation quality on the long-tail items without
compromising overall model performance on the entire item set I.

4 PROTOCF FRAMEWORK

Learning informative representations for tail items poses the key
challenge of interaction sparsity. Without access to side information
(e.g., item content or contextual attributes), we critically remark
that prior neural recommenders [24, 51] learn informative represen-
tations for head items with abundant training interactions. Thus, to
learn discriminative tail item representations, we propose a novel
few-shot learning framework ProtoCF with two key steps:

First, we train a neural base recommender RB to learn high-
quality user representations that mainly capture preferences over
head items and infer item-item relationships (Section 4.1). Then,
we present a few-shot recommender RF that extracts and transfers

Symbol Description

pB (i, j) proximity induced by RB for items i, j ∈ I

p(T) meta-training task distribution over items I
T meta-training task sampled from p(T)

IT,N set of N items sampled from I for task T

Si support set for item i ∈ IT,N in task T

Qi query set for item i ∈ IT,N in task T

GU (· | θ) user encoder in few-shot recommender RF
ZM set ofM group embeddings {zm ∈ RD }Mm=1

simm similarity metric for meta-recommender RF
pi initial item prototype for item i ∈ I

gi group-enhanced item prototype for item i ∈ I

ei final gated item prototype item for item i ∈ I

Table 2: Notations

knowledge from the base recommender RB to learn-to-recommend
few-shot items (Sections 4.2, 4.3).

4.1 Neural Base Recommender

In this section, we outline the architecture of a differentiable base
recommender RB to learn a ranking fϕ (i | u), i ∈ I (with param-
eters ϕ) over the interactions X . Neural CF models [12, 24, 51]
typically learn latent representations for users and items, followed
by an interaction function and learning objective for model training.

4.1.1 User and Item Representations. Latent-factor CF meth-
ods adopt a variety of representation learning strategies, including
matrix factorization [16, 34], autoencoders [24, 51] and graph neu-
ral networks [48]. We define preference encoders FU (· | ϕ) and
FI (· | ϕ) to learn user hu ∈ RD and item hi ∈ RD embeddings for
user u ∈ U and item i ∈ I, which can be described by:

hu = FU (u,X | ϕ) hi = FI (i,X | ϕ) (1)

4.1.2 Training Objective. We define a user-item interaction
function Fint(· | ϕ) to compute a score ŷb (u, i) that indicates the
relevance of item i to user u. The training objective LB of the base
recommender RB is given by:

ŷb (u, i) = Fint(hu , hi | ϕ) LB = l(ŷb (u, i),yui)) (2)

where yui = 1 for observed (u, i) pairs and l(·) is a pairwise [34]
or pointwise [12] loss function. The interaction function Fint mea-
sures user-item relevance and is typically modeled using an inner
product [24, 34, 48, 51].

We train the base recommender RB using cosine similarity
since normalized representations generalize better to few-shot set-
tings [11] (compared to unnormalized inner products), and facilitate
unified recommendation of head and tail items during model infer-
ence. We denote the item-item proximity simb (·) in the latent space
of RB by:

pB (i, j) ∝ simb (hi , hj) = cos(hi , hj) i, j ∈ I (3)

We pre-train RB to extract knowledge of user preferences over
head items via encoder FU (·) and item-item proximities among

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Sankar, et al.

For item p ∈ 𝐼!,#

For item q ∈ 𝐼!,#

For item 𝑟 ∈ 𝐼!,#

𝑢!,# …support users …query users

Meta-Training Task

Model Inference

Item 𝑡 ∈ 𝐼

…

…

…

…

…

𝑢!,$

support users

𝑢%,# 𝑢%,$

𝑢&,$𝑢&,#

𝑢′!,# 𝑢′!,$'

𝑢′%,#
query users

query users𝑢′&,#

𝑢(,#
support users

𝑢(,$

𝑢′&,$'

support users
𝑢′%,$'

T
<latexit sha1_base64="C9GlttJGukZ6KFAql98D/7tz7I8=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r9AXToWTSTBuaSYYkI5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE860cd1vp7SxubW9U96t7O0fHB5Vj0+6WqaK0A6RXKp+iDXlTNCOYYbTfqIojkNOe+H0Pvd7T1RpJkXbzBIaxHgsWMQINlbyBzE2E4J51p4PqzW37i6A1olXkBoUaA2rX4ORJGlMhSEca+17bmKCDCvDCKfzyiDVNMFkisfUt1TgmOogW0SeowurjFAklX3CoIX6eyPDsdazOLSTeUS96uXif56fmug2yJhIUkMFWX4UpRwZifL70YgpSgyfWYKJYjYrIhOsMDG2pYotwVs9eZ10G3Xvqt54vK4174o6ynAG53AJHtxAEx6gBR0gIOEZXuHNMc6L8+58LEdLTrFzCn/gfP4AjnuRbg==</latexit>

Sp
<latexit sha1_base64="Q4PXY+W4kdOgr9c8EcakoYp+Nj4=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2ge0Q8mkmTY0k4xJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxqaZkoQptEcqk6AdaUM0GbhhlOO7GiOAo4bQfj28xvT6jSTIpHM42pH+GhYCEj2FjJ70XYjAjm6cOsH/fLFbfqzoFWiZeTCuRo9MtfvYEkSUSFIRxr3fXc2PgpVoYRTmelXqJpjMkYD2nXUoEjqv10HnqGzqwyQKFU9gmD5urvjRRHWk+jwE5mIfWyl4n/ed3EhNd+ykScGCrI4lCYcGQkyhpAA6YoMXxqCSaK2ayIjLDCxNieSrYEb/nLq6RVq3oX1dr9ZaV+k9dRhBM4hXPw4ArqcAcNaAKBJ3iGV3hzJs6L8+58LEYLTr5zDH/gfP4AGiOSUA==</latexit>

Sq
<latexit sha1_base64="cfdDIRbGyhcV7QkaYj6p6m5uIz4=">AAAB9HicbVDLSgMxFL3xWeur6tJNsAiuykwVdFl047KifUA7lEyaaUMzmWmSKZSh3+HGhSJu/Rh3/o2ZdhbaeiBwOOde7snxY8G1cZxvtLa+sbm1Xdgp7u7tHxyWjo6bOkoUZQ0aiUi1faKZ4JI1DDeCtWPFSOgL1vJHd5nfmjCleSSfzDRmXkgGkgecEmMlrxsSM6REpI+z3rhXKjsVZw68StyclCFHvVf66vYjmoRMGiqI1h3XiY2XEmU4FWxW7CaaxYSOyIB1LJUkZNpL56Fn+NwqfRxEyj5p8Fz9vZGSUOtp6NvJLKRe9jLxP6+TmODGS7mME8MkXRwKEoFNhLMGcJ8rRo2YWkKo4jYrpkOiCDW2p6ItwV3+8ippVivuZaX6cFWu3eZ1FOAUzuACXLiGGtxDHRpAYQzP8ApvaIJe0Dv6WIyuoXznBP4Aff4AG6eSUQ==</latexit>

Sr
<latexit sha1_base64="9AbwfuK4KvSajYGHCsMDQrud1vo=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2ge0Q8mkmTY0k4xJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxqaZkoQptEcqk6AdaUM0GbhhlOO7GiOAo4bQfj28xvT6jSTIpHM42pH+GhYCEj2FjJ70XYjAjm6cOsr/rlilt150CrxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwms/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdKqVb2Lau3+slK/yesowgmcwjl4cAV1uIMGNIHAEzzDK7w5E+fFeXc+FqMFJ985hj9wPn8AHSuSUg==</latexit>

Qp
<latexit sha1_base64="kJIr3U3iQZMToBnoGYs5uaZPT9k=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWaqoMuiG5ct2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMef3Gd+Z8qU5pF8NLOYeSEZSR5wSoyVvH5IzJgSkTbng3hQrjhVZwG8TtycVCBHY1D+6g8jmoRMGiqI1j3XiY2XEmU4FWxe6ieaxYROyIj1LJUkZNpLF6Hn+MIqQxxEyj5p8EL9vZGSUOtZ6NvJLKRe9TLxP6+XmODWS7mME8MkXR4KEoFNhLMG8JArRo2YWUKo4jYrpmOiCDW2p5ItwV398jpp16ruVbXWvK7U7/I6inAG53AJLtxAHR6gAS2g8ATP8ApvaIpe0Dv6WI4WUL5zCn+APn8AFxWSTg==</latexit>

Qq
<latexit sha1_base64="4/+SEw56PdGSEtHtDA4OLq4bsUs=">AAAB9HicbVDLSgMxFL3xWeur6tJNsAiuykwVdFl047IF+4B2KJk004ZmMtMkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JPjx4Jr4zjfaGNza3tnt7BX3D84PDounZy2dJQoypo0EpHq+EQzwSVrGm4E68SKkdAXrO2PHzK/PWVK80g+mVnMvJAMJQ84JcZKXi8kZkSJSBvz/qRfKjsVZwG8TtyclCFHvV/66g0imoRMGiqI1l3XiY2XEmU4FWxe7CWaxYSOyZB1LZUkZNpLF6Hn+NIqAxxEyj5p8EL9vZGSUOtZ6NvJLKRe9TLxP6+bmODOS7mME8MkXR4KEoFNhLMG8IArRo2YWUKo4jYrpiOiCDW2p6ItwV398jppVSvudaXauCnX7vM6CnAOF3AFLtxCDR6hDk2gMIFneIU3NEUv6B19LEc3UL5zBn+APn8AGJmSTw==</latexit>

Qr
<latexit sha1_base64="0yjjrasUzHtb+eXr/OkYG1gytAs=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWaqoMuiG5ct2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMef3Gd+Z8qU5pF8NLOYeSEZSR5wSoyVvH5IzJgSkTbnAzUoV5yqswBeJ25OKpCjMSh/9YcRTUImDRVE657rxMZLiTKcCjYv9RPNYkInZMR6lkoSMu2li9BzfGGVIQ4iZZ80eKH+3khJqPUs9O1kFlKvepn4n9dLTHDrpVzGiWGSLg8FicAmwlkDeMgVo0bMLCFUcZsV0zFRhBrbU8mW4K5+eZ20a1X3qlprXlfqd3kdRTiDc7gEF26gDg/QgBZQeIJneIU3NEUv6B19LEcLKN85hT9Anz8aHZJQ</latexit>

St
<latexit sha1_base64="ynuWAdhsYM8cZ5xjaYxMbIUrVzk=">AAAB9HicbVDLSsNAFL2pr1pfVZdugkVwVZIq6LLoxmVF+4A2lMl00g6dTOLMTaGEfocbF4q49WPc+TdO2iy09cDA4Zx7uWeOHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vbHt5nfnjCleSQfcRozLyRDyQNOCRrJ64UER5SI9GHWx3654lSdOexV4uakAjka/fJXbxDRJGQSqSBad10nRi8lCjkVbFbqJZrFhI7JkHUNlSRk2kvnoWf2mVEGdhAp8yTac/X3RkpCraehbyazkHrZy8T/vG6CwbWXchknyCRdHAoSYWNkZw3YA64YRTE1hFDFTVabjogiFE1PJVOCu/zlVdKqVd2Lau3+slK/yesowgmcwjm4cAV1uIMGNIHCEzzDK7xZE+vFerc+FqMFK985hj+wPn8AIDOSVA==</latexit>

Figure 2: Episodic few-shot learningwithmeta-training task

T and item embedding inference at meta-testing.

different items via pB (i, j). Below, we present our proposed frame-
work ProtoCF that transfers knowledge from the data-rich head
to the data-poor tail to enable robust few-shot recommendations.

4.2 Few-shot Item Recommendation

In this section, we formulate long-tail item recommendation as
few-shot item representation learning given a small support set of
upto K interacted users for each tail item (typically K ≈ 5 to 20).

4.2.1 Few-shot Task Formulation. Our framework is grounded
on episodic learning [44] with a collection of meta-training tasks or
episodes. One approach [11, 38] is to construct meta-training tasks
from the interactions of data-rich head items; however, excluding
the diverse collection of tail items may impede generalization. Thus,
our meta-training tasks operate on the entire item set IT .

Each meta-training task T is a personalized ranking problem
over a subset of N items IT,N randomly sampled from I. We
simulate the interaction distribution of few-shot items during meta-
training by samplingK training interactions (fromNi) for each item
i ∈ IT,N in task T . During inference, we generate few-shot item
recommendations from samples of upto K training interactions per
item. By ensuring consistency betweenmeta-training and inference,
we bridge the distribution mismatch between head and tail items.
The meta-knowledge extracted across diverse meta-training tasks
benefits tail items with sparse interactions.

The episodic few-shot training process operates over a collection
of meta-training tasks {T1,T2, . . . } sampled from a task distribution
p(T) over the item setI. Specifically, aK-shot,N -itemmeta-training
task T sampled from p(T) consists of support S and query Q user
sets over N items IT,N ⊂ I (analogous to the usual sense of
training and testing sets respectively), defined by:
T = {IT,N ,S,Q} IT,N ⊂ I (4)
S = {Si : i ∈ IT,N } Si = {ui,1, . . . ,ui,K } ui,k ∈ Ni

Q = {Qi : i ∈ IT,N } Qi = {u ′i,1, . . . ,u
′
i,K ′} u ′i,k ′ ∈ Ni

where the support user set Si contains K interacted users sam-
pled for each item i ∈ IT,N and the corresponding query set Qi
includes K ′ interacted users sampled from each of the N items.

We learn a few-shot recommender RF that takes as input the sup-
port users S to learn-to-compose representations for items i ∈ IT,N
in task T . The few-shot recommender RF is trained by optimizing

a learning objective designed to match the item recommendations
generated by RF for its query users Q with their corresponding
ground-truth interactions over the item IT,N in each task T .

4.2.2 Initial Item Prototype. We learn a shared metric space of
users and items to synthesize a representation for each item i ∈
IT,N based on its support set Si (with K interactions). The metric
space (with similarity simm (·)) compactly clusters the interacted
users Si of each item i ∈ IT,N around a prototype pi ∈ RD [38].

We first define a user preference encoder GU (· | θ) that maps
each user u ∈ U into a latent embedding space. To transfer knowl-
edge from the base recommender RB , the few-shot user encoder
GU (· | θ) has parameters initialized from its pre-trained encoder
FU (· | ϕ) (Equation 1), but is parameterized with learnable parame-
ters θ . The prototype pi for item i ∈ IT,N is computed as the mean
vector of the embedded support user set Si , defined by:

pi =
1
Si

∑
ui,k ∈Si

GU (ui,k ,XH | θ) i ∈ IT,N (5)

Equation 5 encourages the prototype pi to learn a representative
vector summarizing its cluster of interacted users. However, we face
two critical challenges in handling tail items: first, due to sparse
support sets, the prototypes are often noisy and sensitive to out-
liers; second, due to substantial heterogeneity in the tail, simplistic
averaging may lack the resolution to discriminate across diverse tail
items. Thus, the few-shot recommender RF needs a strong inductive
bias during prototype learning to avoid overfitting, and yet have
sufficient expressivity to learn discriminative prototypes.

4.2.3 Head-Tail Meta Knowledge Transfer. We now exploit
the item-to-item relationship knowledge acquired by the neural
base recommender RB (Section 4.1) as an inductive bias to enhance
the item prototype pi (Equation 5). Given an item i ∈ IT,N with
limited support users, extracting knowledge from the most related
items to item i (based on the item-to-item proximities) can provide
valuable guidance to synthesize robust item prototypes.

However, a direct knowledge transfer from RB to RF is computa-
tionally challenging: dynamically identifying related items for each
few-shot item during prototype construction is not scalable due to
the arbitrary complexity of RB and the high cardinality of item sets
in massive inventories. Thus, we extract a compact representation
of the item-item proximity knowledge (Equation 3) discovered by
RB and transfer this knowledge to enhance item prototypes.

Group-Enhanced Item Prototype Learning. We learn a set
of M group embeddings ZM as basis vectors modeling item-item
proximity in the latent space of the base recommenderRB . Formally,
the group embeddingsZM are given by:

ZM = {zm ∈ RD : 1 ≤ m ≤ M} M ≪ |I| (6)
As depicted in Figure 3 (bottom left), we intuitively visualize the
group embeddings as discriminative centroids of overlapping clusters
of items identified by RB , and conversely view items as mixtures
over the group embeddings, e.g., each centroid may represent a con-
textual factor such as a restaurant type (Cafe) or location (Chicago),
while restaurants are mixture of multiple centroids (Cafe located in
Chicago) and belong to overlapping item clusters.

To enhance the prototype pi of item i ∈ IT,N , we synthesize a
group-enhanced prototype gi ∈ RD as a mixture over theM group

ProtoCF: Prototypical Collaborative Filtering for Few-shot Recommendation RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

Gate

FEW-SHOT ITEM EMBEDDING INFERENCE

ITEM CLUSTERS

Group-enhanced
prototype 𝒈!

	𝑢!,# … 	𝑢",$
support users

PRE-TRAINEDNEURALBASERECOMMENDER

User Encoder

𝐹$ 𝑢, 𝑋 𝜙) 𝑓% 𝑖	,𝑋	 𝜙)

𝑒% 𝑒"

Item Encoder

𝑦%%"𝑦%" Training

𝐺$ 𝑢,𝑋 𝜃)

…

Item Prototype Computation

query user

	𝑢′

𝒑"

Gated item prototype 𝒆!

𝒆%

𝐺$ 𝑢′,𝑋 𝜃)

𝑦%%!"

𝒑"

𝐿&

STOCHASTICKNOWLEDGEDISTILLATION

𝐿'

Figure 3: Architecture diagram of ProtoCF depicting the different model components: pre-trained neural base recommender

RB (top left), group embedding learning via stochastic knowledge distillation LG (bottom left), initial item prototype construc-

tion via support set averaging followed by group-enrichment and adaptive gating to construct gated item prototype ei (right).

embeddings. The mixture coefficients are estimated by a learnable
attention mechanism [1] to measure compatibility αim between
the prototype pi and each centroid zm ∈ ZM . We parameterize
the attention function with a lightweight network comprised of an
auxiliary set KM = {km ∈ RD : 1 ≤ m ≤ M} of trainable keys to
index the group embeddings. We implement the attention function
with an inner product followed by softmax normalization, as:

gi =
M∑

m=1
αimzm αim =

exp
(
Wqpi · km

)∑M
m′=1 exp

(
Wqpi · km′

) (7)

whereWq ∈ RD×D is projects the prototype pi into a query to
index the centroids. The group-enhanced item prototype gi relates
the different centroids via attention, transferring knowledge to
few-shot items with sparse support sets.

Task-level Stochastic Knowledge Distillation.We present a
knowledge distillation strategy [13] to learn compact group embed-
dings ZM that capture item-item relationships in RB . We transfer
knowledge from a high-capacity teacher model (base recommender
RB) to a compact student model (group embeddings ZM) by en-
couraging the student to emulate predictions of the teacher;ZM is
trained to emulate the item proximity distribution in RB .

Aligning pairwise item proximities over all items in I is not
scalable; thus, we operate at the granularity of each meta-training
task T . For each item i ∈ IT,N , we compute a soft probability distri-
bution pB (j | i,RB) for the teacher model RB (based on equation 3)
over other items j ∈ IT,N in the task T , decribed by:

pB (j | i,RB) =
exp

(
pB (i, j)/T

)∑
k ∈IT,N exp

(
pB (i,k)/T

) i, j ∈ IT,N (8)

where T > 0 is a temperature scaling hyper-parameter to reg-
ulate the rate of knowledge transfer. We analogously define the
item similarity distribution pF (j | i,ZM) for the student modelZM
based on the metric space proximity simm (·) of group-enhanced

prototypes gi and gj for items i, j ∈ IT,N , defined by:

pF (j | i,ZM) =
exp

(
simm (gi , gj)

)∑
k ∈IT,N exp

(
simm (gi , gk)

) i, j ∈ IT,N (9)

We align the two distributions by minimizing cross-entropy
between their task-level similarities [13]. Since each item is typically
related to very few itemswithin the taskT , our stochastic knowledge
distillation loss LG minimizes distribution divergence over the top-n
(n ≈ 10) related items (out of N) identified by the teacher RB , by:

LG = −
1
nN

∑
i ∈IT,N

∑
j ∈xB,n (i)

pB (j | i,RB) logpF (j | i,ZM) (10)

where B,n (i) = Topn
(
pB (· | i,RB)

)
denotes the top-n most re-

lated items to item i within IT,N based on the teacher RB . Distinct
from prior distillation approaches [13, 31] that match student and
teacher predictions over a fixed set of classes, LG is stochastic and
thereby more efficient since it matches the top-n item proximity
distributions over different sets of sampled items in each task. The
distillation loss LG transfers knowledge from RB to the group em-
beddings ZM and is trained jointly with the rest of the framework.

4.2.4 Item Prototype Fusion via Neural Gating. The initial
prototype pi for item i ∈ IT,N direct encodes its support users
Si , while the group-enhanced prototype gi captures the knowl-
edge transferred from related items (via base recommender RB).
We design a gating mechanism [41] that adaptively selects salient
feature dimensions from pi and gi to infer the final gated item pro-
totype ei ∈ RD . Specifically, we introduce a neural gating layer to
merge pi and gi by learning a non-linear gate to flexibly modulate
information flow via dimension re-weighting, defined by:

gate = σ
(
Wд1pi +Wд2gi + bд

)
i ∈ IT,N

ei = gate ⊙ pi + (1 − gate) ⊙ gi (11)

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Sankar, et al.

whereWд1 ∈ RD×D ,Wд2 ∈ RD×D , and bд ∈ RD are learnable
parameters in the neural gating layer, ⊙ denotes the element-wise
product operation, and σ is the sigmoid non-linearity.

4.2.5 Few-shot Recommender Training. We induce few-shot
item rankings for the query users Q using the gated prototypes
{ei : i ∈ IT,N } in task T . We generate item recommendations for
each query user u ′ ∈ Q (over items IT,N) by measuring similarity
simm (·) with each prototype ei . Each task T minimizes a negative
log-likelihood LP between the few-shot recommendations for query
users Q and their ground-truth interactions in T , defined by:

LP = −
1

KN

∑
i ∈IT,N

∑
u′
i,k′ ∈Qi

logpF (i | u ′i,k ′ ,θ) (12)

where pF (i | u ′i,k ′ ,θ) is computed based on cosine similarity and
the choice of likelihood function for few-shot training.

The overall loss L is composed of two terms, the few-shot rec-
ommendation loss LP (Equation 12) and the knowledge distillation
loss LG for group embedding learning (Equation 10), given by:

L = LP + λLG (13)

where λ is a tunable hyper-parameter. Algorithm 1 summarizes the
training procedure of our entire framework ProtoCF.

4.2.6 Model Inference. We infer the gated prototype ei for each
item i ∈ I by sub-sampling K interactions from its historical inter-
actions Ni as the the support set (Equation 11). We generate item
recommendations for each user u ∈ U by:

ŷf (u, i) = simm (eu , ei) i ∈ I eu = GU (u,X | θ) (14)

The few-shot recommender RF is designed for recommendations
over tail items (sparse interactions), while the base recommender
RB is effective for head items (abundant interactions). In ProtoCF,
we compute rankings over the item set I by ensembling predictions
from RB and RF . One simple interpolation approach is given by:

ŷ(u, i) = (1 − η) · ŷb (u, i) + η · ŷf (u, i) (15)

where 0 < η < 1 balancesRF andRB . We empirically show effective
overall item recommendations with η = 0.5.

4.3 Model Details

We now discuss different choices of likelihood functions for few-
shot training and details of the base recommender RB .

4.3.1 Few-shot Likelihood. We examine two likelihood func-
tions in neural CF models: multinomial and logistic.
• Multinomial log-likelihood:The scores simm (eu′ , ei) for each
query user u ′ ∈ Qi , over the N gated item prototypes in meta-
training task T , are normalized to produce probabilities pF (i |
u ′,θ) over the N items IT,N , defined by:

pF (i | u
′,θ) =

exp
(
simm (eu′ , ei)

)∑
j ∈IT,N exp

(
simm (eu′ , ej)

) u ′ ∈ Qi (16)

The resulting loss LG (with Equation 12) is also known as the
cross-entropy loss, defined over the N items of task T .

Algorithm 1 ProtoCF: Prototypical Collaborative Filtering
Input: User-item interactions X , meta-training task distribution p(T).
Output: Function fT (i | u), i ∈ IT for few-shot item recommendations.
1: Pre-train the neural base recommender RB on the training interactions

X to learn fH ,ϕ (i | u) (eqn 2) and freeze parameters ϕ .
2: Initialize user preference encoder GU (· | θ) of few-shot recommender

RF with parameters FU (· | ϕ) from the base recommender RB .
▷ Meta-training: learn-to-recommend few-shot items.

3: while not converged do

4: Sample a meta-training task T = {IT,N , S, Q} ∼ p(T).
5: Calculate the initial pi and group-enhanced gi prototypes for items

i ∈ IT,N (eqn 5 and eqn 7).
6: Compute the knowledge distillation loss LG (eqn 10).
7: Compute gated prototype ei for items i ∈ IT,N (eqn 11).
8: Estimate few-shot recommendation loss LP (eqn 12) with multino-

mial (eqn 16) or logistic (eqn 17) log-likelihoods.
9: Minimize overall loss L (eqn 13) using mini-batch gradient descent.

▷ Model Inference: few-shot and overall item recommendations.
10: Generate item recommendations over I for user u ∈ U (eqn 15)

• Logistic log-likelihood: The relevance ŷu′i = simm (eu′ , ei)
for item i ∈ IT,N to query user u ′ ∈ Qi , is transformed into a
probability using the sigmoid function σ . We use a confidence
weight β > 0 to re-weight the likelihood of observed 1’s which
are far fewer than the unobserved 0’s in implicit feedback.

logpF (i | u ′,θ) = β logσ (ŷu′i)+
∑

j ∈IT,N ,u′<Nj

log(1−σ (ŷu′j)) (17)

The cosine similarity scores are appropriately scaled to match
the non-saturating regimes of the softmax and sigmoid functions
in the multinomial and logistic log-likelihoods respectively.

4.3.2 Neural Base Recommender Architecture. We consider
three neural CF methods, matrix factorization (MF) [34], denoising
(CDAE) [51] and variational (VAE-CF) [24] autoencoders, as base
recommenders RB (Equation 1) for ProtoCF.
• Matrix Factorization (MF) [34]: The user FU and item FI en-
coders are learnable latent embeddings for each user and item
respectively, trained using a logistic log-likelihood function.

• Variational AutoEncoder (VAE-CF) [24]: The user encoder
FU is a two-layer Multi-Layer Perceptron transforming the bi-
nary user preference vector xu ∈ RI into a D-dimensional user
embedding hu ∈ RD , defined by:

hu = FU (xu | ϕ) = σ (WT
2 (σ (WT

1 xu + b1) + b2) (18)

The item encoder FI is a latent embedding. VAE-CF uses a multi-
nomial likelihood with KL-divergence regularization.

• Denoising AutoEncoders (CDAE) [51]: The user encoder FU
operates on partially corrupted inputs xu and adds an auxiliary
per-user embedding to the encoder output from Equation 18.

5 EXPERIMENTS

We present experiments on four real-world datasets to evaluate
our framework ProtoCF. We introduce datasets, baselines and
experimental setup in Sections 5.1, 5.2 and 5.3. We propose four
research questions to guide our experiments:
(RQ1) Does ProtoCF beat state-of-the-art NCF and sparsity-aware

methods on overall recommendation performance?

ProtoCF: Prototypical Collaborative Filtering for Few-shot Recommendation RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

Dataset Epinions Yelp Weeplaces Gowalla

Items 9,035 10,451 11,679 27,920
Users 9,729 13,926 6,167 17,848
Interactions 260,263 465,386 427,236 907,351
Interactions per item 28.81 44.53 36.58 32.50

Table 3: Dataset statistics

(RQ2) What is the impact of item interaction sparsity on the few-
shot recommendation performance of ProtoCF?

(RQ3) How do the different architectural choices impact the few-
shot and overall performance of ProtoCF?

(RQ4) How do the hyper-parameters (distillation loss balance factor
λ and meta-training task size N) affect ProtoCF?

Finally, we discuss the limitations of our ProtoCF model and
explore future directions in Section 5.8.

5.1 Datasets

We conducted experiments on four publicly available benchmark
datasets, including two online product review platforms (Epinions,
Yelp) and two check-in based social networks (Weeplaces, Gowalla).

• Epinions
1
: product ratings from an e-commerce platform; we

retain interactions with ratings higher than two.
• Yelp

2
: user ratings on local businesses located in the state of

Arizona, obtained from Yelp dataset challenge round 13.
• Weeplaces

3
: we extract business check-ins from Weeplaces of

different categories, including Nightlife, Outdoors, Entertain-
ment, Travel and Food, across all cities in the United States.

• Gowalla [25]: restaurant check-ins in Gowalla by users across
different cities in the United States.

We pre-process the datasets to retain users and items with at
least ten interactions (10-core) (Table 3).

5.2 Baselines

We present comparisons against prior work that broadly fall into
two categories: standard neural collaborative filtering models, and
sparsity-aware long-tail item recommendation models, including
regularization and meta-learning techniques.

• Neural Base Recommenders: neural CF methods with matrix
factorization (BPR) [34], and autoencoder models VAE-CF [24]
and CDAE [51] (described in Section 4.3.2).

• NCF [12]: neural CF model with non-linear interactions (via
neural layers) between the user and item embeddings.

• NGCF [48]: state-of-the-art graph-based NCF with embedding
propagation layers on the user-item interaction graph.

• Cofactor [23]: regularized MF to capture inter-item associations
by jointly decomposing the user-item interaction matrix and the
item-item co-occurrence matrix, with shared latent item factors.

• EFM [4]: embedding factorization model that uses item-item
co-occurrence with bayesian personalized ranking.

1https://www.cse.msu.edu/ tangjili/datasetcode/truststudy.htm
2https://www.yelp.com/dataset
3https://www.yongliu.org/datasets/

• DropoutNet [45]: randomly dropout latent CF embedding for
regularization in content-based CF for cold-start (auxiliary con-
tent). We adapt it to long-tail items by replacing content embed-
dings with prototypes (over support set).

• MetaRec-LWA [43] meta-learning method to construct recom-
mendation models for cold-start users with user-specific linear
transforms; we adapt it to construct few-shot item embeddings.

• MetaRec-NLBA [43]: meta-learning recommendation model
that learns user-specific biases parameterized by non-linear lay-
ers, to replace the user-specific weights in MetaRec-LWA.

Note that we omit baseline comparisons with gradient-based
meta-learning recommenders [20, 27], since they are designed for
cold-start recommendation in the presence of auxiliary attributes.
We test ProtoCF by adopting BPR [34] (matrix factorization), VAE-
CF [24], and CDAE [51] as base recommenders of our framework.

5.3 Experimental Setup

In each dataset, we randomly split the user interactions of all items
into train (70%) and test (30%) sets, which ensures consistent in-
teraction distributions across train and test. We also use 10% of
training interactions as validation for hyper-parameter tuning. We
use NDCG@K and Recall@K as evaluationmetrics, computed based
on the rank of ground-truth test interactions in top-K ranked lists.

We design a unified model to enhance few-shot recommendation
on the tail without affecting the overall performance. We first eval-
uate overall recommendations over the entire item set I followed
by few-shot performance analysis over the long-tail.

All experiments are conducted on a Tesla K-80 GPU using Py-
Torch. ProtoCF is trained using episodic learning for a maximum
of 300 episodes with a meta-training task size of 512 items using
Adam optimizer. ProtoCF uses a multinomial log-likelihood for
few-shot training and uses support sets of upto K = 10 and query
sets of K ′ = 5 interactions per item. We learnM = 100 group em-
beddingsZM , tune the learning rate and balance hyper-parameter λ
(Equation 13) in the range {10−4, 10−3, 10−2}, and use dropout reg-
ularization with a rate of 0.5. We tune baselines in hyper-parameter
ranges centered at the author-provided values on each dataset and
set the latent embedding dimension to 128 for consistency. Our
implementation of ProtoCF and datasets are publicly available4.

5.4 Overall Recommendation Results (RQ1)

Our experimental results comparing the overall recommendation
performance of ProtoCF with competing baselines is shown in
Table 4. We summarize our key empirical observations below:

• Neural CF models based on autoencoders (VAE-CF, CDAE) and
graph neural networks (NGCF) outperform other latent-factor
models (NCF, BPR) on overall model performance (Table 4).

• Model regularization strategies that use item co-occurrence in-
formation (CoFactor, EFM) to improve long-tail item recommen-
dations, are noticeably worse than BPR in overall performance.

• Sparsity-aware meta-learning models (MetaRec) perform poorly
in overall item rankings. One potential reason is their inability
to effectively exploit or transfer knowledge from head items.

4https://github.com/aravindsankar28/ProtoCF

https://www.yongliu.org/datasets/
https://github.com/aravindsankar28/ProtoCF

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Sankar, et al.

Dataset Epinions Yelp Weeplaces Gowalla

Metric N@50 R@50 N@50 R@50 N@50 R@50 N@50 R@50

Standard Neural Collaborative Filtering Methods
BPR [34] 0.0860 0.1666 0.0749 0.1416 0.2537 0.3778 0.1661 0.2703
NCF [12] 0.0878 0.1694 0.0752 0.1429 0.2462 0.3694 0.1702 0.2745
NGCF [48] 0.0913 0.1725 0.0826 0.1579 0.2533 0.3764 0.1696 0.2758
VAE-CF [24] 0.0938 0.1778 0.0854 0.1602 0.2482 0.3730 0.1710 0.2769
CDAE [51] 0.0927 0.1774 0.0870 0.1611 0.2570 0.3760 0.1634 0.2644

Sparsity-aware Long-tail Item Recommendation Methods
DropoutNet [45] 0.0881 0.1697 0.0761 0.1435 0.2516 0.3751 0.1697 0.2768
Cofactor [23] 0.0845 0.1639 0.0734 0.1402 0.2342 0.3539 0.1596 0.2642
EFM [4] 0.0742 0.1534 0.0741 0.1403 0.2306 0.3429 0.1532 0.2584
MetaRec-NLBA [43] 0.0453 0.0937 0.0381 0.0875 0.1698 0.2889 0.0753 0.1384
MetaRec-LWA [43] 0.0467 0.0943 0.0392 0.1425 0.1702 0.2997 0.0722 0.1391

Prototypical Collaborative Filtering Recommenders (ProtoCF)
ProtoCF + BPR 0.0964 0.1812 0.0815 0.1533 0.2576 0.3879 0.1737 0.2800
ProtoCF + VAE 0.0977 0.1830 0.0857 0.1605 0.2725 0.4035 0.1899 0.3004

ProtoCF + CDAE 0.0972 0.1824 0.0883 0.1623 0.2697 0.4011 0.1786 0.2875
Percentage Gains 4.16% 2.92% 1.50% 0.75% 6.03% 6.80% 11.05% 8.49%

Table 4: Overall item recommendation results on four datasets, R@K and N@K denote Recall@K and NDCG@K metrics at

K = 50. Sparsity-aware models are generally outperformed by standard NCF methods on overall item recommendation; Pro-

toCF achieves overall NDCG@50 gains of 6% and Recall@50 gains of 4% (over the best baseline) across all datasets.

• ProtoCF outperforms state-of-the-art baselines (NDCG@50
gains of 5% on average) on overall item ranking, with consis-
tent gains for the variants of all neural base recommenders.
Next, we examine the few-shot performance of ProtoCF.

5.5 Few-Shot Recommendation Results (RQ2)

To evaluate few-shot results, we qualitatively analyze performance
for long-tail itemswith sparse interactions. Specifically, we compare
recommendation results for long-tail items with varying number
of training interactions K (5 to 30) by computing Recall@50 met-
rics only on their associated test interactions (Figure 4). We only
include the base recommenders BPR and VAE-CF here for com-
parison since they consistently outperform other sparsity-aware
variants.

We find that performance generally increases with item inter-
action count; ProtoCF achieves significant performance gains for
items with less than 20 interactions. Episodic training with knowl-
edge transfer is one of the key factors responsible for our higher
gains over items with sparse interactions (small values of K).

To evaluate the impact of interaction sparsity across the entire
item set, we compare overall recommendation performance (Re-
call@K) across item-groups with different sparsity levels. We divide
the test set into ten equal-sized item-groups, sorted in increasing
order by the average number of interactions per item. Figure 5 com-
pares ProtoCF against two base recommenders BPR and VAE-CF.

From figure 5, model performance is lower on the long-tail for
base recommenders BPR and VAE due to severe interaction sparsity.
Notably, ProtoCF achieves much higher item recall scores on the
tail items with significant gains over the corresponding base rec-
ommenders, while ensuring comparable performance on the head
items. Knowledge transfer of item-to-item relationships via group

embeddings and pre-trained user encoder enables ProtoCF to learn
discriminative prototypes for tail items with sparse interactions.

5.6 Model Ablation Study (RQ3)

We examine the impact of different architectural design choices
in ProtoCF on its overall and few-shot performance (Table 5).
We choose VAE-CF as the base recommender to instantiate Pro-
toCF due to its consistent results. Here, we report few-shot perfor-
mance by only considering the test interactions of long-tail items
with less than 20 training interactions. Note that most ablation
variants do not have a significant impact on overall results since all
predictions are computed by ensembling RF and RB (Equation 15).
Our key design choices and empirical insights are shown below:

Dataset Epinions Gowalla

Metric Overall

R@50

Few-shot

R@50

Overall

R@50

Few-shot

R@50

ProtoCF 0.1830 0.1070 0.3004 0.2195
w/o Prototype Gating 0.1823 0.0948 0.2992 0.2082
w/o Knowledge Distillation 0.1805 0.0869 0.2923 0.1983
ProtoCF-Avg 0.1801 0.0712 0.2898 0.1696
ProtoCF-logistic 0.1804 0.0896 0.2853 0.1843
VAE-CF [24] 0.1778 0.0549 0.2769 0.1316
MetaRec-LWA [43] 0.0943 0.0898 0.1391 0.1804

Table 5: Model ablation study of ProtoCF; few-shot perfor-

mance is reported for tail items (less than 20 training in-

teractions). Knowledge transfer and prototype gating con-

tribute 10-19% and 5-11% to few-shot gains respectively.

• Remove Prototype Gating:We replace the gating layer (Equa-
tion 11) that adaptively fuses the initial and group-enhanced item

ProtoCF: Prototypical Collaborative Filtering for Few-shot Recommendation RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

5-10 11-15 16-20 21-25 26-30
Training interactions per item

0.05

0.10

0.15

0.20

Ite
m

 R
ec

al
l@

50

Epinions
VAE-CF BPR ProtoCF + BPR ProtoCF + VAE

5-10 11-15 16-20 21-25 26-30
Training interactions per item

0.05

0.10

0.15 Yelp

5-10 11-15 16-20 21-25 26-30
Training interactions per item

0.05

0.10

0.15

0.20

0.25

0.30 Weeplaces

5-10 11-15 16-20 21-25 26-30
Training interactions per item

0.10

0.15

0.20

0.25 Gowalla

0%

50%

100%

0%

50%

100%

0%

50%

100%

0%

50%

100%

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 it

em
s

Figure 4: Few-shot item recommendation results: Performance comparison for long-tail itemswith varying number of training

interactions K (5 to 30); lines denote model performance (Recall@50) and background histograms indicate the cumulative

fraction of the item inventory covered by tail items with ≤ K impressions. Overall performance generally increases with K
for all models; ProtoCF achieves notably stronger gains (over baselines) for items with few training interactions (small K).

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
Item Groups (increasing popularity)

0.05

0.10

0.15

0.20

0.25

0.30

Ite
m

 R
ec

al
l@

50

Epinions
VAE-CF BPR ProtoCF + BPR ProtoCF + VAE

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
Item Groups (increasing popularity)

0.05

0.10

0.15

0.20

0.25

0.30 Yelp

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
Item Groups (increasing popularity)

0.05

0.10

0.15

0.20

0.25

0.30
Weeplaces

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
Item Groups (increasing popularity)

0.10

0.15

0.20

0.25

0.30 Gowalla

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

Av
g.

 in
te

ra
ct

io
ns

 p
er

 g
ro

up

Figure 5: Impact of item interaction sparsity: Performance comparison for item-groups sorted in increasing order by their

average training interaction counts; lines denote model performance (Recall@50) and background histograms indicate the

average number of interactions in each item-group. ProtoCF has significant performance gains (over baselines) on the tail

items (item-groups G1 to G8) while maintaining comparable performance on the head items (item-groups G9 to G10).

prototypes, with a simpler additive operation. Adaptive gating
contributes 5-11% few-shot performance gains.

• Remove Knowledge Distillation: We test the importance of
item-to-item relationships transferred from the base recom-
mender via distillation loss LG ; here, we exclude knowledge
transfer from group embeddings ZM and only train on the few-
shot loss LP . Removing distillation loss LG reduces few-shot
results by 10-19%.

• Averaging-based Prototype (ProtoCF-AVG): We directly
use the averaging-based initial item prototype (Equation 5) for
inference; here, we also exclude the pre-trained parameter ini-
tialization for the user encoder GU (from FU in the base rec-
ommender). ProtoCF-AVG (without any knowledge transfer) is
worse than ProtoCF by a margin of 20-30%, yet outperforms the
base recommender VAE-CF by nearly 30% on few-shot items.

• Logistic log-likelihood (ProtoCF-logistic): We train Pro-
toCF using logistic log-likelihood (Equation 17). ProtoCF with
multinomial log-likelihood (Equation 16) outperforms ProtoCF-
logistic by a considerablemargin; this validates prior findings [24]
on the efficacy of multinomal for top-N recommendation.

We further note that the meta-learning baseline MetaRec-LWA
improves few-shot results (compared to VAE-CF), but forgets knowl-
edge of head items resulting in poor overall recommendations.

5.7 Parameter Sensitivity (RQ4)

We analyze sensitivity to the hyper-parameter λ that weights the
knowledge distillation loss LG (Equation (13)). In Figure 6 (a), we
show the effect of λ on few-shot results with base recommenders
BPR and VAE-CF on Gowalla. We empirically find the optimal value
of λ to be 0.01 for both models, which also transfers across datasets.

0.00 0.02 0.04 0.06 0.08 0.10
Lambda

0.19

0.20

0.21

0.22

0.23

Fe
w-

sh
ot

 It
em

 R
ec

al
l@

50 Lambda (hyper-parameter for LG)
ProtoCF-BPR ProtoCF-VAE

100 200 300 400 500
Task Size

0.20

0.21

0.22

0.23 Task Size (# items per task)

Figure 6: Few-shot performance on Gowalla (for tail items

with less than 20 training interactions) is higher for larger

meta-training tasks; the empirically optimal value of bal-

ance factor λ = 0.01 also transfers across all datasets.

We investigate the impact of task size, which is the number
of items N sampled in each meta-training task T . In Figure 6
(b), performance typically increases with task size (and stabilizes
∼ 400), due to a larger set of sampled items available for rank-
ing; this observation is consistent with prior few-shot learning
studies [38].

5.8 Discussion

Our framework ProtoCF is orthogonal to advances in neural rec-
ommenders that enhance representational capacity to learn from
massive interaction data.We adapt expressive neural recommenders
to develop light-weight few-shot models tailored to the long-tail.
Furthermore, our formulation requires no side information and can
be easily adapted to address the long-tail of users.

ProtoCF learns ametric space predicated on knowledge transfer
over a shared user space. Few-shot transfer learning across domains
with disjoint feature spaces is a potential future direction.

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Sankar, et al.

6 CONCLUSION

This paper formulates long-tail item recommendation as learning-
to-embed items with sparse interactions. A novel few-shot learn-
ing framework ProtoCF is introduced to extract meta-knowledge
across a collection of training tasks designed to simulate tail item
ranking. ProtoCF efficiently transfers knowledge from arbitrary
base recommenders to construct discriminative prototypes for items
with very few interactions. Our experiments indicate 5% overall
performance gains (Recall@50) for ProtoCF over the state-of-the-
art, with notable 60-80% few-shot performance gains (Recall@50)
on long-tail items with less than 20 training interactions.

REFERENCES

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In ICLR.

[2] Alex Beutel, Kenton Murray, Christos Faloutsos, and Alexander J Smola. 2014.
Cobafi: collaborative bayesian filtering. In WWW. 97–108.

[3] Rodrigo Borges and Kostas Stefanidis. 2020. On Measuring Popularity Bias in
Collaborative Filtering Data. In EDBT/ICDT Workshops.

[4] Da Cao, Liqiang Nie, Xiangnan He, Xiaochi Wei, Shunzhi Zhu, and Tat-Seng
Chua. 2017. Embedding factorization models for jointly recommending items
and user generated lists. In SIGIR. 585–594.

[5] Dong-Kyu Chae, Jin-Soo Kang, Sang-Wook Kim, and Jaeho Choi. 2019. Rating aug-
mentation with generative adversarial networks towards accurate collaborative
filtering. In WWW. 2616–2622.

[6] Dong-Kyu Chae, Jihoo Kim, Duen Horng Chau, and Sang-Wook Kim. 2020. AR-
CF: Augmenting Virtual Users and Items in Collaborative Filtering for Addressing
Cold-Start Problems. In SIGIR. 1251–1260.

[7] Zhihong Chen, Rong Xiao, Chenliang Li, Gangfeng Ye, Haochuan Sun, and
Hongbo Deng. 2020. ESAM: Discriminative Domain Adaptation with Non-
Displayed Items to Improve Long-Tail Performance. In SIGIR. 579–588.

[8] Manqing Dong, Feng Yuan, Lina Yao, Xiwei Xu, and Liming Zhu. 2020. Mamo:
Memory-augmented meta-optimization for cold-start recommendation. In KDD.
688–697.

[9] Zhengxiao Du, Xiaowei Wang, Hongxia Yang, Jingren Zhou, and Jie Tang. 2019.
Sequential Scenario-Specific Meta Learner for Online Recommendation. In KDD.
2895–2904.

[10] Miao Fan, Yeqi Bai, Mingming Sun, and Ping Li. 2019. Large margin prototypical
network for few-shot relation classification with fine-grained features. In CIKM.

[11] Spyros Gidaris and Nikos Komodakis. 2018. Dynamic few-shot visual learning
without forgetting. In CVPR. 4367–4375.

[12] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

[13] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[14] Andre Holzapfel, Bob Sturm, and Mark Coeckelbergh. 2018. Ethical dimensions
of music information retrieval technology. TISMIR 1, 1 (2018), 44–55.

[15] Daeryong Kim and Bongwon Suh. 2019. Enhancing VAEs for collaborative
filtering: flexible priors & gating mechanisms. In RecSys. 403–407.

[16] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[17] Adit Krishnan, Hari Cheruvu, Cheng Tao, and Hari Sundaram. 2019. A modular
adversarial approach to social recommendation. In CIKM. 1753–1762.

[18] Adit Krishnan, Mahashweta Das, Mangesh Bendre, Hao Yang, and Hari Sundaram.
2020. Transfer Learning via Contextual Invariants for One-to-Many Cross-
Domain Recommendation. In SIGIR. 1081–1090.

[19] Adit Krishnan, Ashish Sharma, Aravind Sankar, and Hari Sundaram. 2018. An
adversarial approach to improve long-tail performance in neural collaborative
filtering. In CIKM. 1491–1494.

[20] Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. 2019.
MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation.
In KDD. 1073–1082.

[21] Aoxue Li, Tiange Luo, Zhiwu Lu, Tao Xiang, and Liwei Wang. 2019. Large-scale
few-shot learning: Knowledge transfer with class hierarchy. In CVPR. 7212–7220.

[22] Xiaopeng Li and James She. 2017. Collaborative variational autoencoder for
recommender systems. In KDD. 305–314.

[23] Dawen Liang, Jaan Altosaar, Laurent Charlin, and David M Blei. 2016. Factor-
ization meets the item embedding: Regularizing matrix factorization with item
co-occurrence. In RecSys. 59–66.

[24] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational autoencoders for collaborative filtering. In WWW. 689–698.

[25] Yong Liu, Wei Wei, Aixin Sun, and Chunyan Miao. 2014. Exploiting geographical
neighborhood characteristics for location recommendation. In CIKM. 739–748.

[26] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and
Stella X Yu. 2019. Large-scale long-tailed recognition in an open world. In CVPR.
2537–2546.

[27] Yuanfu Lu, Yuan Fang, and Chuan Shi. 2020. Meta-learning on Heterogeneous
Information Networks for Cold-start Recommendation. In KDD. 1563–1573.

[28] Mi Luo, Fei Chen, Pengxiang Cheng, Zhenhua Dong, Xiuqiang He, Jiashi Feng,
and Zhenguo Li. 2020. MetaSelector: meta-learning for recommendation with
user-level adaptive model selection. In WWW. 2507–2513.

[29] Jingwei Ma, Jiahui Wen, Mingyang Zhong, Liangchen Liu, Chaojie Li, Weitong
Chen, Yin Yang, Hongkui Tu, and Xue Li. 2019. DBRec: Dual-Bridging Recom-
mendation via Discovering Latent Groups. In CIKM. 1513–1522.

[30] Bernard Marr. 2018. (2018). https://www.forbes.com/sites/bernardmarr/2018/04/
18/netflix-used-big-data-to-identify-the-movies-that-are-too-scary-to-finish/

[31] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. 2019. Relational knowledge
distillation. In CVPR. 3967–3976.

[32] Yoon-Joo Park. 2012. The adaptive clustering method for the long tail problem
of recommender systems. IEEE TKDE 25, 8 (2012), 1904–1915.

[33] Sachin Ravi and Hugo Larochelle. 2017. Optimization as a Model for Few-Shot
Learning. In ICLR. OpenReview.net.

[34] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI.

[35] Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. 2021. Graph Neural Networks
for Friend Ranking in Large-scale Social Platforms. In WWW. 2535–2546.

[36] Aravind Sankar, Yanhong Wu, Yuhang Wu, Wei Zhang, Hao Yang, and Hari
Sundaram. 2020. Groupim: A mutual information maximization framework for
neural group recommendation. In SIGIR. 1279–1288.

[37] Aravind Sankar, Xinyang Zhang, Adit Krishnan, and Jiawei Han. 2020. Inf-vae:
A variational autoencoder framework to integrate homophily and influence in
diffusion prediction. In WSDM. 510–518.

[38] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for
few-shot learning. In NeurIPS. 4077–4087.

[39] Rama Syamala Sreepada and Bidyut Kr Patra. 2020. Mitigating long tail effect in
recommendations using few shot learning technique. Expert Sys. App. 140 (2020).

[40] Qiuling Suo, Jingyuan Chou, Weida Zhong, and Aidong Zhang. 2020. TAdaNet:
Task-Adaptive Network for Graph-Enriched Meta-Learning. In KDD. 1789–1799.

[41] Duyu Tang, Bing Qin, and Ting Liu. 2015. Document modeling with gated
recurrent neural network for sentiment classification. In EMNLP. 1422–1432.

[42] Yi Tay, LuuAnh Tuan, and Siu CheungHui. 2018. Latent relational metric learning
via memory-based attention for collaborative ranking. In WWW. 729–739.

[43] Manasi Vartak, Arvind Thiagarajan, ConradoMiranda, Jeshua Bratman, andHugo
Larochelle. 2017. A meta-learning perspective on cold-start recommendations
for items. In NeurIPS. 6904–6914.

[44] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016.
Matching networks for one shot learning. In NeurIPS. 3630–3638.

[45] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. 2017. Dropoutnet: Address-
ing cold start in recommender systems. In NeurIPS. 4957–4966.

[46] Huiwei Wang and Yong Zhao. 2020. ML2E: Meta-Learning Embedding Ensemble
for Cold-Start Recommendation. IEEE Access 8 (2020), 165757–165768.

[47] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. Kgat:
Knowledge graph attention network for recommendation. In KDD. 950–958.

[48] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In SIGIR. 165–174.

[49] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. 2017. Learning to model
the tail. In NeurIPS. 7029–7039.

[50] Tianxin Wei, Ziwei Wu, Ruirui Li, Ziniu Hu, Fuli Feng, Xiangnan He, Yizhou Sun,
and Wei Wang. 2020. Fast Adaptation for Cold-start Collaborative Filtering with
Meta-learning. ICDM.

[51] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collab-
orative denoising auto-encoders for top-n recommender systems. In WSDM.
153–162.

[52] Yao Wu, Xudong Liu, Min Xie, Martin Ester, and Qing Yang. 2016. CCCF: Im-
proving collaborative filtering via scalable user-item co-clustering. In WSDM.

[53] Gui-Rong Xue, Chenxi Lin, Qiang Yang, WenSi Xi, Hua-Jun Zeng, Yong Yu, and
Zheng Chen. 2005. Scalable collaborative filtering using cluster-based smoothing.
In SIGIR.

[54] Hongzhi Yin, Bin Cui, Jing Li, Junjie Yao, and Chen Chen. 2012. Challenging the
long tail recommendation. arXiv preprint arXiv:1205.6700 (2012).

[55] Runsheng Yu, Yu Gong, Xu He, Bo An, Yu Zhu, Qingwen Liu, and Wenwu
Ou. 2020. Personalized Adaptive Meta Learning for Cold-start User Preference
Prediction. AAAI (2020).

[56] Yin Zhang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Lichan Hong, and
Ed H Chi. 2021. A Model of Two Tales: Dual Transfer Learning Framework for
Improved Long-tail Item Recommendation. In WWW. 2220–2231.

[57] Ziwei Zhu, Shahin Sefati, Parsa Saadatpanah, and James Caverlee. 2020. Rec-
ommendation for New Users and New Items via Randomized Training and
Mixture-of-Experts Transformation. In SIGIR. 1121–1130.

https://www.forbes.com/sites/bernardmarr/2018/04/18/netflix-used-big-data-to-identify-the-movies-that-are-too-scary-to-finish/
https://www.forbes.com/sites/bernardmarr/2018/04/18/netflix-used-big-data-to-identify-the-movies-that-are-too-scary-to-finish/

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 ProtoCF Framework
	4.1 Neural Base Recommender
	4.2 Few-shot Item Recommendation
	4.3 Model Details

	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Experimental Setup
	5.4 Overall Recommendation Results (RQ1)
	5.5 Few-Shot Recommendation Results (RQ2)
	5.6 Model Ablation Study (RQ3)
	5.7 Parameter Sensitivity (RQ4)
	5.8 Discussion

	6 Conclusion
	References

