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Abstract. In this paper, we propose MuTATE, a Multi-Task Aug-
mented approach to learn Transferable Embeddings of knowledge graphs.
Previous knowledge graph representation techniques either employ task-
agnostic geometric hypotheses to learn informative node embeddings or
integrate task-specific learning objectives like attribute prediction. In
contrast, our framework unifies multiple co-dependent learning objec-
tives with knowledge graph enrichment. We define co-dependence as mul-
tiple tasks that extract covariant distributions of entities and their rela-
tionships for prediction or regression objectives. We facilitate knowledge
transfer in this setting: tasks→graph, graph→tasks, and task-1→task-2
via task-specific residual functions to specialize the node embeddings for
each task, motivated by domain-shift theory. We show 5% relative gains
over state-of-the-art knowledge graph embedding baselines on two public
multi-task datasets and show significant potential for cross-task learning.

Keywords: Knowledge graphs · Knowledge graph embedding · Graph
neural networks · Multi-task learning · Residual learning

1 Introduction

Knowledge graphs enable versatile storage, visualization, interpretation, and
manipulation of large volumes of contextual information across interacting enti-
ties (nodes) via relations (links) in diverse domains such as linguistics (Wang et
al. (2013)), biomedicine (Ernst et al. (2015)) and finance (Cheng et al. (2020)).
The transitive entity association structure enhances inferencing applications
involving entity attribute prediction and entity-to-entity relation prediction.
However, the persistent challenges with knowledge graphs are two-fold, link spar-
sity and its task-unaware inflexible structure (Huang et al. (2019); Wang et al.
(2014)). To overcome these challenges, a popular direction is to embed knowl-
edge graphs in dense vector spaces (Bordes et al. (2013); Wang et al. (2014);
Sun et al. (2019)) via path-based patterns such as symmetry, anti-symmetry,
composition and analogy (Sect. 3.1). However, these learned patterns are static
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and not task-specific. To address this, the second direction integrates knowledge
graph embeddings with specific learning tasks (Huang et al. (2019); Wang et al.
(2019a)). In this case, the node/link embeddings are optimized for a single-task,
but cannot combine or benefit multiple tasks.

Unlike these two directions, our approach unifies multi-task learning, graph
enrichment, and embedding learning. We specifically focus on co-dependent tasks,
i.e., tasks depending on shared aspects of the graph structure. As an example, we
consider two well-defined prediction objectives in Fig. 1, book recommendation
and book genre prediction. We consider a collaborative recommender model on
the user-book links and a prediction model on the book-genre links.
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Fig. 1. Toy knowledge graph with four entity
types: users, books, age-groups, genres. Enti-
ties are linked via user prefers genre, user in
age-group, user likes book, book is genre rela-
tions. Sample task-models include recommen-
dation and book genre prediction.

These two task-models extract
task-biased views of the knowledge
graph depending on their inductive
biases. However, both tasks (rec-
ommendation, genre prediction)
require accurate book embeddings,
i.e., shared subspace of the joint
(User, Item, Genre) latent distri-
bution. Further, each model can
address link sparsity in the graph
by predicting new links of the
same type, thus transferring the
extracted knowledge back to the
graph. These newly predicted links
represent the task-biased distribu-
tion learned by each model. Com-
bining multiple tasks in this man-
ner jointly enriches the graph as
well as the other tasks through
their shared subspaces. In sum-
mary, our contributions are as fol-
lows:

Merging Multi-task Learning and Knowledge Graph Embed-
ding/Knowledge Graph Enrichment: We propose a holistic view of knowl-
edge graphs and multi-task learning to enable bidirectional knowledge transfer
between the graph and multiple co-dependent learning objectives.

Generalizability: The proposed framework makes no assumptions about the
data-domain or learning tasks. We validate this empirically.

Modeling Multi-task Embedding Updates via Residuals: We identify
the connection between multi-task knowledge graph updates and covariate shift
(Johansson et al. (2016)) to unify multiple task distributions over shared node
embeddings via task-specific residual functions.

Strong Experimental Results: We demonstrate strong experimental results
on knowledge graphs constructed from two large public datasets, Google Local
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Reviews1 (He et al. (2017); Pasricha and McAuley (2018)) and Yelp Challenge2

and using two co-dependent task-models, word2vec (Mikolov et al. (2013)) and
a context-aware recommender (Krishnan et al. (2020)).

2 Problem Definition

Knowledge Graph Notations: We consider a heterogeneous directed knowl-
edge graph with multiple entity (node) types, E = {E1,E2 · · · E|E|}.

Factual Links: R = {R1,R2 · · ·R|R|} is the set of all links (called factual
links), where each set Rr : E1(r) → E2(r) is a specific relation r ∈ {1, 2, · · · |R|}
between head and tail entity sets E1(r),E2(r) ∈ E . Each factual link (e1, r, e2)
∈ Rr denotes head and tail entities e1 ∈ E1(r), e2 ∈ E2(r) with relation r. �e1,�e2
denote the d-dimensional entity embeddings of e1 and e2. For each relation r,
we also learn d-dimensional head and tail embedding projectors (�p1(r), �p2(r)).

Task-Model Notations: Task-Model M(r) predicts relation-r links between
entity sets E1(r) and E2(r). Each M(r) is trained with factual links Rr.

Model-Biased Links: We predict new links (e′
1, r, e

′
2) via task-model M(r)

between the input entity e′
1 ∈ E1(r) and the model predicted output e′

2 ∈ E2(r)
(e.g., a specific user e′

1 and a specific book e′
2 from the recommender task-model

in Fig. 1). Note that factual links (e1, r, e2) ∈ Rr exist apriori in the knowledge
graph unlike model-biased links (denoted (e′

1, r, e
′
2) ∈ R′

r).

3 Knowledge Graph Embeddings

Knowledge graph embedding techniques typically encode static node connectiv-
ity pattens to mitigate link-sparsity (Sun et al. (2019)) such as:

– Symmetry: (e1, ra, e2) =⇒ (e2, ra, e1)
– Anti-Symmetry: (e1, ra, e2) =⇒ not (e2, ra, e1)
– Inversion: (e1, ra, e2) =⇒ (e2, rb, e1)
– Composition: (e1, ra, e2) and (e2, rb, e3) =⇒ (e1, rc, e3)
– Analogy: (e1, ra, e2) and (e3, ra, e4) =⇒ (e1, rb, e3)/(e2, rc, e4)

None of these first-cut patterns are task-specific. Prior approaches in this
vein do not provide mechanisms for task-adaptation or multi-task learning. We
formalize task-to-task knowledge transfer as follows:

– How do we leverage links (e1, ra, e2) for link predictions of the form (e1, r′, e′),
(e2, r′, e′), (e′′, r′′, e1), (e′′, r′′, e2)?

Note that the solution to the above transfer learning is specific to the relation
types ra, r′, r′′ as well the entity nodes e1 and e2, and thus can be combined
with task-models M(r) involving these entities or relations. We thus propose a
two-step solution where we first leverage the static patterns to generate first-
cut embeddings and then augment them with task-specific residual functions
(Sect. 3.2) to enable adaptation to the respective task-models.
1 http://cseweb.ucsd.edu/∼jmcauley/datasets.html.
2 https://www.yelp.com/dataset/challenge.

http://cseweb.ucsd.edu/~jmcauley/datasets.html
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3.1 Link Embedding Model

Parallelizable embedding learning is critical for knowledge graph applications
owing to their massive sizes. DistMult (Yang et al. (2014)) describes a block-
optimizable bilinear form with a learnable diagonal embedding projector (Pr)
for each relation type r Lerer et al. (2019). Under this approach, the likelihood
of a link (e1, r, e2) is given by:

L(�e1, r, �e2 ) = �eT
1 Pr�e2 (1)

However, due to the symmetric nature of the above transformation, it cannot
encode anti-symmetry and inversion patterns (Sun et al. (2019)). In contrast,
other methods that do not have a symmetric objective wrt. head and tail entities
(e.g., Sun et al. (2019)) pose block optimization constraints. To overcome these
limitations, we break the symmetry in Eq. (1) by describing two projectors (for
the head and tail entity embeddings) for each relation type. Our form adds twice
as many relation-specific projectors. However, the number of relation-types is
typically orders of magnitude less than the number of nodes so that the overhead
is insignificant. We now define the likelihood of a link (e1, r, e2):

L(�e1, r, �e2 ) = cosine-sim
(

�e1 ⊗ �p1(r), �e2 ⊗ �p2(r)
)

(2)

The above modification enables composition, inversion, and anti-symmetry:

– Anti-Symmetry: Consider relations ra to be anti-symmetric, so that,
(e1, ra, e2) =⇒ not (e2, ra, e1) We can encode this in our likelihood term
with orthogonal projectors for the head and tail, i.e., �p1(r) ⊥ �p2(r) so that
we take the orthogonal projections of the head and tail entity when the direc-
tion of the relation is reversed.

– Inversion: Consider relations ra, rb to be inversions of each other, so that,
(e1, ra, e2) =⇒ (e2, rb, e1) We can encode this in our likelihood term by
switching the head and tail projectors, i.e., �p1(ra) = �p2(rb) and �p2(ra) =
�p1(rb). It is easy to verify that this would result in L(�e1, ra,�e2) = L(�e2, rb,�e1)
which results in the desired inversion.

– Composition: Relation rc composes ra and rb if (e1, ra, e2), (e2, rb, e3) =⇒
(e1, rc, e3). We can encode this in our likelihood terms with the following sim-
ple switch, i.e., �p1(rc) = �p1(ra) and �p2(rc) = �p2(ra). This would transitively
align the composed relation with the head and tail entities e1 and e3.

Finally, we also add a scale factor to Equation (2) (sim = cosine-similarity):

L(�e1, r, �e2 ) = sim
(

�e1 ⊗ (�p1(r) + sI) , �e2 ⊗ (�p2(r) + sI)
)

(3)

In the next subsection, we describe task-specific embedding adaptation and
link-sparsity mitigation on the first-cut factual embeddings from Eq. (3).
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3.2 Embedding Augmentation via Model-Biased Links

Consider the prediction task for relation r between entity sets E1(r), E2(r).
Task-model M(r) predicts model-biased links (e′

1(r), r, e
′
2(r)) where e′

1(r) ∈
E1(r), e′

2(r) ∈ E2(r), from its inferred co-occurrence distribution. In this man-
ner, each M(r) generates model-biased links R′

r different from the factual links
Rr of the same relation type. Under Eq. (3), the likelihood of each factual link
(e1, r, e2) ∈ Rr is given by:

L(�e1, r,�e2) = sim
(

�e1 ⊗ (�p1(r) + sI) , �e2 ⊗ (�p2(r) + sI)
)

(4)

Upon optimization, we obtain the first-cut factual embedding space �E with
the latent factual embedding distribution P (�E). However, each task-model M(r)
represents a co-occurrence distribution between entity sets E1(r),E2(r) which
differs from those in P (�E), depending on the specific task and the model-
architecture (inductive bias). We thus learn model-specific embedding spaces
�E′

r by optimizing Eq. (3) over the model-biased links R′
r instead of Rr (Fig. 2).

Fig. 2. (a) We learn the facutal entity embeddings via Eq. (3), (b) we then generate
model-biased links with the Book Recommender model to train residual functions (Eq.
(7)), (c) improve the task-model with the residual functions from step (b) in Eq. (12).
Steps (b), (c) can be iteratively optimized.

Thus for pairs of entities e1 ∈ E1(r), e2 ∈ E2(r), we obtain both factual and
model-biased embeddings (�e′ denotes the model-biased embedding of entity e):

�e1, �e2 ∼ P (�E); �e′
1, �e′

2 ∼ P (�E′
r) (5)

We learn the divergence Δ(r) between distributions P (�E) and each P (�E′
r)

so that the knowledge graph embeddings can be adapted to each task-model:

Δ(r) = KL(P (�E), P (�E′
r)) (6)

We encode Δ(r) for each task-model M(r) via embedding residual shifts
motivated by covariate domain-shift theory (He et al. (2016), Johansson et al.
(2016)). In the next subsection, we show how this enables task→graph and
graph→task embedding conversion via task-specific residual functions.
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3.3 Residual Shift

The factual and model-biased embedding distributions (P (�E), P (�E′
r)) represent

different covariate-shifts in the node embedding space depending on the biases
of each task-model M(r). We model each of these shifts with a task-specific
residual function δr to translate between the spaces �E and �E′

r):

�e′
1 = �e1 + δr (�e1 ); �e′

2 = �e2 + δr (�e2 ) (7)

where �e1 denotes the factual embedding of the entity e1(r) and each residual
function δr is given by,

δr (�e) = tanh( Wr (�e) + br ) (8)

We learn the weights Wr and biases br to optimize the likelihoods of the
model-biased links (L(�e′

1, r, �e′
2) ∀ (e′

1, r, e
′
2) ∈ R′

r) by placing the residual
shifted entity embeddings �e′

1, �e′
2 in Eq. (3).

4 Training Methods

4.1 Learning the Task-Specific Residual Functions

We generate the model-biased links (e′
1, r, e

′
2) ∈ R′

r for each e′
1 ∈ E1(r) via

M(r). We then learn the residual function δr via alternating optimization of the
following likelihoods:

L(Rr) =
∑

(e1,r,e2)∈Rr

log L(�e1, r, �e2 ) (9)

L(R′
r) =

∑
(e′

1,r,e′
2)∈R′

r

log L ( �e′
1, r, �e′

2 ) (10)

with notations following from Eq. (3), Eq. (7) and Table 1.

4.2 Graph and Model Co-training

Table 1. Residual function notations

Symbol Description

�e1, �e2 Factual embeddings

δr (.) Residual function for M(r)

Wr, br Weight, bias for δr

�e′
1, �e′

2 Residual shifted embeddings

�e′
1 = �e1 + δr (�e1 )

�e′
2 = �e2 + δr (�e2 )

We now describe our training approach
to concurrently learn entity embeddings
and task-models with continuous dif-
ferentiable objective functions. In Eq.
(10), the task-model is held constant,
i.e., we only learn the entity embed-
dings and residual functions. For co-
training, we apply the same residual
transformations to the factual links in
the graph; and add them to the task-
model’s optimization objective as soft-criteria.
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For each factual link (e1, r, e2 ) ∈ Rr, we estimate the residual shifted likeli-
hood as follows:

SA(e1, e2 ) = L( �e′
1, r, �e′

2) (11)

where L follows from Eq. (3). We now add the following regularization term to
the objective function O(r) of M(r):

λ(r)
( ∑

Rr

SA (e1, e2) − M(r) (e1, e2)
)

(12)

Here, M(r) (e1, e2) indicates the confidence score assigned by M(r) to link e2
to e1 and λ(r) is the regularization strength.

4.3 Model to Model Cross-Training

Let us consider the following direction of transfer, M(r1) → M(r2) (teacher-
model → student-model). To cross-train M(r2) with M(r1), we need at least
one entity set to be shared across the two models. Let us denote a shared entity
set E with factual embeddings �e, e ∈ E obtained via Eq. (3). We then learn the
residual function δr1 corresponding to the teacher-model M(r1), and update the
entity embeddings for E with Eq. (10), while holding δr1 constant. Finally, we
perform the graph-to-model updates described in Sect. 4.2 to train student-model
M(r2) with the updated embeddings.

5 Experimental Results

Here, we present our experimental analyses on diverse multi-domain datasets and
validate our framework. First, we show that counterfactual enrichment with effec-
tive task-models can significantly improve node embedding quality with sparse
connections, by evaluating the updated embeddings on the held-out link comple-
tion task. Next, we show that co-training a context-aware neural recommenda-
tion model with the knowledge graph leads to simultaneous embedding updates
and better model performance for nodes with lower degrees. We also notice a
small degradation in the performance for high-degree nodes. Additionally, we
exhibit that we can significantly improve the above context-aware neural recom-
mendation model by leveraging a distributed word embedding model using the
illustrated cross-training method. Finally, we do a scalability analysis against
publicly available baseline implementations and conclude with limitations and
discussion.

5.1 Data Description, Setup

Google Local Reviews Dataset: He et al. (2017); Pasricha and McAuley
(2018): Users rate businesses on a 0–5 scale with temporal, spatial, and textual
context features in each review. We filter this dataset for at least 10 users per
business and 5 businesses per user recursively and eliminate all reviews with
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less than a 3-star rating. The resulting dataset has 38,614 users and 26,922
businesses, and contextual node types - Review Words (5000 nodes), Business
Name Words (2000 nodes), Categories of the Business (650 nodes), Pricey-ness
(4 nodes), Location (312 nodes) - states, cities, and Time (23 nodes) - time
(binned into 6-h chunks), month, day.

We create our knowledge graph by connecting all users to the businesses they
rated, business name and review words to each business, review words, categories
of visits, and business names to users who rated them, the pricey-ness, locations,
and times to businesses and users. On each of these links, we associated a 1–4
level depending on the strength of the associations (measured statistically on a
per-user and per-business basis). These levels constitute our relation types. The
total number of nodes and links in the graph is 73,525 and 7,325,614 respectively.

Yelp Challenge Dataset: Users rate businesses on a 0–5 scale with temporal,
spatial, and textual context features for each review. We filter this dataset for at
least 30 users per business and 10 businesses per user recursively and eliminate
all reviews with less than a 3-star rating. The resulting dataset has 25,3695 users
and 69,738 businesses. We obtain the following contextual nodes - Review Words
(2000 nodes), Business Attributes (200 nodes), Location (1062 nodes) - states,
cities, lat-long (binned using a KD-tree), Time (23 nodes) - time (binned by 6-h
chunks), month, day.

We create our knowledge graph by connecting all users to the restaurants they
rated, the review words and attributes of the restaurants to each restaurant, the
location nodes, the associated time nodes, and likewise for the users as well. On
each of these links, we associated a 1–4 level depending on the strength of the
associations (measured statistically on a per-user and per-business basis). These
levels constitute our relation types. The total number of nodes and links in the
graph is 99,906 and 10,102,877 respectively.

Baselines: We choose a broad array of diverse knowledge graph embedding base-
lines as a representative set to evaluate the edge completion task: TransE Bor-
des et al. (2013), DistMult Yang et al. (2014), ComplEx Trouillon et al. (2016),
Rotate Sun et al. (2019), RotH Chami et al. (2020) and GAAT Wang et al.
(2019b). We used the OpenKE implementations3 in Tensorflow/PyTorch with
default parameter settings, wherever applicable.

5.2 Task-Models

For both datasets, we used a pair of task models that both have the same input
entity-set (users), and different output entity sets (business category and busi-
nesses respectively).

We train the distributional word2vec word-embedding model Mikolov et al.
(2013) on the set of review text words, business names, and all the business
attributes text over all the reviews in the dataset. We use the basic version (non-
transfer) of the context-aware recommender proposed in Krishnan et al. (2020)

3 http://139.129.163.161//.

http://139.129.163.161//
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Table 2. Overall Link Prediction Results. Bold-font denotes statistically significant
gains over all baselines at the 0.05 significance-level under paired t-tests, while * denotes
the second-best performer.

Link type User to business User to category

Metric R @ 5 R @ 10 R @ 5 R @ 10

TransE [Bordes et al. 13] 0.43 0.60 0.52 0.68

RotatE [Sun et al. 19] 0.59* 0.72 0.64 0.80

RotH [Chami et al. 20] 0.58 0.76* 0.65* 0.79

DistMult [Yang et al. 14] 0.56 0.70 0.63 0.77

CompleX [Trouillon et al. 15] 0.57 0.70 0.61 0.76

GAAT [Wang et al. 19] 0.59* 0.74 0.63 0.82*

MutatE-F 0.58 0.73 0.64 0.79

MutatE-CF 0.62 0.80 0.68 0.84

with the non-textual categorical links of the users and businesses (as above)
forming the context of each review. To predict business category/attribute words
for each user, we take an average of their review word set embeddings, and map
the average to the closest business category words as learned by the model.

Parameters: In both the above datasets, for the context-aware recommenda-
tion model Krishnan et al. (2020), we use the author recommended parameters
with 200-dimensional embeddings, while we use the gensim4 implementation of
word2vec with a maximum 10-length window. The additional parameters of our
model, such as the discrepancy scaling in Eq. (10) were tuned with an exponen-
tial grid-search approach (e−5 to e0). The knowledge graph and counterfactual
residuals were also trained with 200-dimensional embeddings, and implemented
in Tensorflow, and run on a Tesla K80 GPU.

Metrics for Link Prediction: In both the datasets, we attempt to predict
held-out links using the embeddings learned by our models, as well as the embed-
ding baselines. For each held-out link of the form (e1, r, e2), we create several
negative samples of the form (e1, r, ẽ2) and (ẽ1, r, e2), i.e., with the same rela-
tion type and head and tail entity types, however a randomly sampled entity
for either the head or tail. We then rank the entire list of negative samples
against the true link (e1, r, e2) under each embedding model and measure the
Recall@K metric for the respective ranked lists. Specifically, we measure the
Recall@5, Recall@10 for two types of held-out links - User → Business and
User → Category-word (Attribute in case of yelp), for a 100-length ranked list.

5.3 Primary Results - Link Prediction

We evaluate the above two knowledge graphs on the link completion task. We
randomly tag 20% of the user nodes as held-out nodes. We then held out two
4 https://pypi.org/project/gensim/.

https://pypi.org/project/gensim/
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types of links for these users - we held out half of their user-business links and
half of their user-business attribute/category word links. These two link types
directly correspond to the two task models we used: The word2vec model predicts
user-business category word links while the context-aware recommender predicts
the user-business links.

For our model, we present two variants - MUTATE-F, which only uses the
factual nodes, and MUTATE-CF, which uses counterfactual enrichment for the
held-out user set. Specifically, we use the top-5 words predicted by the word2vec
model, and the top-5 businesses predicted by the recommender to form coun-
terfactual user-business and user-word links. We also trained all the baseline
embedding models on the same knowledge graphs and attempted to predict the
same set of held-out links using their trained embeddings.

Key Observations from Table 2: The relative order of performance of the
baselines is as expected, DistMult Yang et al. (2014) performs moderately owing
to the inverse nature of some relation-types in our graphs across user-context-
business paths. In contrast, our base model can overcome this challenge and
perform comparably to the other baselines.

We also observe that our MUTATE-CF model strongly outperforms all the
competing models on the User-Word link prediction and User-Business link pre-
diction tasks. The two external task models, namely word2vec and the context-
aware recommender, can better predict the missing links and enrich the graph
compared to the heuristic or path-based link completion approach in the other
baselines. It is easy to see how we can leverage the inductive biases of the specific
models. While the word2vec model can interpret the review text’s distributional
properties, the context-aware recommender leverages the multiplicative predic-
tors from the context features. Also, note that these two models use the same
data as the Knowledge Graphs and do not depend on any external sources.

5.4 Co-training Model with Graph

In this section, we describe our co-training approach for the recommender model
with the knowledge graph. Specifically, we make predictions from these models
for users and use these counterfactual links to update knowledge graph embed-
dings, as described in Eq. (9). Simultaneously, we make predictions from the
updated embeddings for users and use these to augment the recommendation
loss function as described in Eq. (11).

Table 3. Co-training performance gains against the infor-
mation-flow parameter λj

λj e−5 e−4 e−3 e−2 e−1

Word2Vec −5.6% −1.3% +8.1% −4.9% −18.6%

Context recommender +2.8% −1.03% +5.4% −8.6% −28.9%

Although we did
not achieve a dra-
matic performance
difference, we observe
that overregularizing
the model or under-
regularizing the model

is suboptimal. In other words, the co-training proceeds best when we set the
regularizer λj to an optimal balance. The numbers in Table 3 indicate the best
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performance improvements we were able to achieve for the recommender model
under different settings of λj . A higher value of λj meant that the recommender
was more constrained by the knowledge graph, while a lower value meant that
more information flows from the model to the graph. Thus, we need an ideal
trade-off between the forward and reverse information flow.

5.5 Cross-Training Across Tasks

Next, we describe our cross-training approach for the recommender model by
leveraging the word2vec model.

Table 4. Cross-training performance gains for the
context-recommender with word2vec, Mword2vec →
Knowledge Graph → Mcontext-aware-recommender, parame-
ter λj is set to varying values as in Eq. (10), percentages
relative to isolated performance

λj e−5 e−4 e−3 e−2 e−1

Context recommender −1.2% +6.4% +12.9% −10.3% −22.1%

We first train the
word2vec model on
the base data, then
use it to update the
knowledge graph emb
eddings using the
model to graph knowl-
edge transfer method
from Sect. 4.3. We then

use the reverse direction to regularize the recommender model as in Eq. (12),
i.e., knowledge now flows from the updated graph to the recommender model.
Thus, the overall direction of knowledge flow is as follows:

Mword2vec → Knowledge Graph → Mcontext-aware-recommender

Since the review text is informative of both user and business embeddings
owing to their shared link structure, we were able to achieve noticeable perfor-
mance gains for the recommender model (Table 4) after leveraging the sequence
of steps described in Sect. 4.3.

Table 5. Cross-training performance gains for the
word2vec model, Mcontext-aware-recommender → Knowledge
Graph → Mword2vec, parameter λj is again set to vary-
ing values as in Eq. (10), percentages relative to isolated
performance

λj e−5 e−4 e−3 e−2 e−1

Word2vec −7.9% −2.1% −1.6% −4.1% −18.3%

However, we observe
that the reverse trans-
fer direction, i.e. context-
aware recommender to
word2vec model, does not
result in noticeable per-
formance gains (Table 5),
indicating the importance
of choosing the more

informative model to enrich the knowledge graph.
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5.6 Sparsity Analysis

In this subsection, we study the impact of counterfactual updates on sparse
and non-sparse nodes. Specifically, for both the tasks, user-word link predic-
tion, and user-business link prediction, we study the relative gains obtained by
counterfactual updates, i.e., the difference in the performance of MUTATE and
MUTATE-F for the different sparsity sets.

Fig. 3. The gains of MUTATE-CF relative to
MUTATE-F on the two types of link predic-
tion. In each case, we measure the performance
gains across 4 quartiles of users, arranged by
the density of that specific type of link for the
user.

Q1, Q2, Q3 and Q4 denote
the four sparsity quartiles for each
respective user node, and we then
measure the average performance
difference between MUTATE and
MUTATE-F for each quartile in
Fig. 3. As expected, we obtain the
strongest gains for sparse users,
i.e., users in quartiles Q3/Q4, since
they lack the word-associations to
help us learn better embeddings.
Thus, the distributional knowledge
encoded in the word2vec model
bridges this gap in the knowledge

graph and enriches the corresponding node embeddings.

5.7 Limitations and Discussion

The two primary limitations of our work are the non-exchangeability of cross-
training and homoscedastic embedding assumption in each entity set. This
results from our assumption that a single residual function, conditioned on the
node embeddings, can encode the distributional differences introduced by the
task-models. Alternatives such as Gaussian mixture embedding spaces (Casale
et al. (2018)) can encode heteroscedastic node embeddings. However, they are
quite hard to implement efficiently within a knowledge graph neural network
optimization framework. We plan to study the trade-offs between generalizabil-
ity and overall exchangeability in future work.

6 Conclusion

We propose a holistic view of knowledge graphs and multi-task learning to enable
task-enhancement and graph enrichment. Our framework unifies co-dependent
task distributions with the underlying knowledge graph via residual learning.
The key strength of our approach lies in delegating the extraction of task-specific
distributions to the respective task-models while enabling cross-task knowledge
transfer. While the current work primarily demonstrates empirical applications
of such a framework, we intend to study the theoretical exchangeability of the
proposed method for future work.
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