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Abstract
We present InfoMotif, a new semi-supervised, motif-regularized, learning framework over
graphs. We overcome two key limitations of message passing in popular graph neural
networks (GNNs): localization (a k-layer GNN cannot utilize features outside the k-hop
neighborhood of the labeled training nodes) and over-smoothed (structurally indistinguish-
able) representations. We formulate attributed structural roles of nodes based on their
occurrence in different network motifs, independent of network proximity. Network motifs
are higher-order structures indicating connectivity patterns between nodes and are crucial
to the organization of complex networks. Two nodes share attributed structural roles if
they participate in topologically similar motif instances over covarying sets of attributes.
InfoMotif achieves architecture-agnostic regularization of arbitrary GNNs through novel
self-supervised learning objectives based on mutual informationmaximization. Our training
curriculum dynamically prioritizes multiple motifs in the learning process without relying
on distributional assumptions in the underlying graph or the learning task. We integrate
three state-of-the-art GNNs in our framework, to show notable performance gains (3–10%
accuracy) across nine diverse real-world datasets spanning homogeneous and heterogeneous
networks. Notably, we see stronger gains for nodes with sparse training labels and diverse
attributes in local neighborhood structures.

Keywords Association rule · Data mining · Itemset · Transaction collection

1 Introduction

This paper proposes a class of motif-regularized graph neural networks (GNNs); GNNs have
emerged as a popular paradigm for semi-supervised learning on graphs due to their ability
to learn representations combining topology and attributes, without relying on expensive
feature engineering. GNNs are typically formulated as a message passing framework [62],
where the representation of a node is computed by a GNN layer aggregating features from
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Fig. 1 Localizedmessage passing limitations: A stylized example in a homogeneous graphwith a 2-layerGNN
(colors indicate node attributes). Node a is in the 2-hop range of node c. Node c does not receive gradient
updates from node b (class 2) since node b is more than 2 hops away. The GNN will likely label node c as
class 1. Notice that c is in class 2 since c and b have identical local structure and attribute covariation

its graph neighbors via learnable aggregators. Long-range dependencies are captured by
using k layers to incorporate features from k-hop neighborhoods. GNNs have demonstrated
promising results in several application domains spanning homogeneous graphs (e.g., user-
user friendship networks) comprising nodes and edges of a single type, and heterogeneous
graphs (e.g., academic citation networks) containing nodes and edges of different types.

Localized message passing limitationsWe illustrate two key limitations of prior k-layer GNN
architectures: k-hop localized and over-smoothed representations (Fig. 1).

1. GNNs, while highly expressive, are inherently localized: a k-layer GNN cannot utilize
features of nodes that lie outside the k-hop neighborhood of the labeled training nodes.
In Fig. 1, nodes a and b belong to different classes. A 2-layer GNN sees unlabeled node
c within the aggregation range of a (class 1) and outside the influence of b (class 2 and
more than 2 hops away). Thus, a GNN will more likely label c with class 1 (than class 2).
However, in reality, c and b display identical attributes (node color) in the local structure;
a localized GNN fails to incorporate this factor.

2. GNNswithmultiple layers learn over-smoothed node representations by iteratively aggre-
gating neighbor features [25]. In Fig. 1, nodes c and a share the same number of neighbors
with blue and green attributes; however, green neighbors of node a form triangles, while
blue neighbors of node b (and c) form triangles. Considering local nodal attribute arrange-
ments, node c is more similar to b than to a. The over-smoothing effect in GNNs obscures
this attribute covariation difference when classifying node c.

Thus, we require a new learning framework over graphs, to overcome the limitations of
message passing in popular GNNs.

Oneway to overcome these limitations is the paradigmof role discovery [38] that identifies
nodes with structurally similar neighborhoods. In contrast to the notion of communities
defined by network proximity, structural roles characterize nodes by their local connectivity
and subgraph patterns independent of their location in the network [41]; thus, two nodes
with similar roles may lie in different parts of the graph. Prior role-aware models learn
similar representations for structurally similar nodes while ignoring nodal attributes [36],
i.e., they will assign the same role to nodes a and b in Fig. 1 with topologically identical
local structures; however, nodes a and b differ in their local attribute arrangements (blue vs.
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green attributes in triangles) and thus belong to different classes. Furthermore, structural role
learning is relatively unexplored in heterogeneous graphs with typed nodes and edges.

Present Work To enable the expressivity to distinguish attributed structures, we propose the
concept of attributed structural roles that identify structurally similar nodes with covarying
attributes, independent of network proximity. We ground structural roles on network motifs,1

which are induced subgraph structures over a few nodes (e.g., triangles). Networks motifs are
a broad class of higher-order structures that indicate connectivity patterns between nodes,
and are crucial for understanding the organization and properties of complex networks [28].
In addition, network motifs can be easily generalized to capture type semantics in rich het-
erogeneous graphs through heterogeneous (typed) higher-order structures [39]. Leveraging
higher-order connectivity structures between nodes is extremely valuable to overcome the
lack of sufficient training labels in local neighborhoods during semi-supervised learning.
We define two nodes as sharing attributed structural roles if they participate in topologically
similar motif instances over covarying sets of attributes. We note that attribute covariance
permits for multiple discrete and continuous attributes, rather than stricter notions such as
regular equivalence [41].

We propose InfoMotif, a GNN architecture-agnostic regularization framework that
exploits the covariance of attributes and motif structures. InfoMotif learns regularizers based
on a set of network motifs, which vary in their task-specific significance. Specifically, across
instances of the samemotif (e.g., a triangle structure), we learn discriminative attribute corre-
lations to regularize the underlying GNN node representations; this encourages the GNN to
learn statistical correspondences between distant nodes that participate in similarly attributed
instances of that motif. We propose a novel training curriculum to integrate multiple motif
regularizers while attending to motif types and skewed motif distributions. Our key contri-
butions are:

– Attributed Structural Role LearningWepropose the novel concept of attributed structural
roles to regularize GNN models for semi-supervised learning. In contrast to prior work
that identify structurally similar nodes agnostic to attributes [36], we adopt the paradigm
of self-supervised learning to regularize node representations to capture attribute correla-
tions inmotif structures. InfoMotif unifies the expressive local neighborhood aggregation
power of message-passing GNNs with the paradigm of structural roles.

– Architecture-agnostic Regularization Framework To the best of our knowledge, InfoMo-
tif is the first to address the limitations of localized message passing in GNNs through an
architecture-agnostic framework. Unlike prior attempts that design new aggregators [61,
64], we achieve architecture independence by modulating the node representations
learned by the base GNN through motif-based mutual information maximization, to
capture attributed structural roles. We regularize three state-of-the-art GNNs within our
framework to demonstrate considerable performance gains over several prior graph learn-
ing approaches.

– Distribution-agnostic Multi-Motif CurriculumWe propose two learning progress indica-
tors, task-driven utility and distributional novelty, to integrate multiple motif regularizers
within our framework. Unlike prior strategies [70, 72] that incorporate regularizers
via tunable hyper-parameters, our training curriculum dynamically prioritizes differ-
ent motifs in the learning process without relying on distributional assumptions on the
underlying graph or on the learning task.

1 The termsnetworkmotif, graphlet, and induced subgraph are used interchangeably in graphmining literature.
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We regularize three state-of-the-art GNN models in our InfoMotif framework for semi-
supervised node classification. Our experiments are conducted on awide variety of real-world
datasets spanning homogeneous and heterogeneous networks. In homogeneous graphs, Info-
Motif outperforms prior approaches (by 3-10%classification accuracy) on two diverse classes
of datasets: assortative citation networks that exhibit strong homophily and dis-assortative
air-traffic networks that depend on structural roles. We also demonstrate the utility of our
framework in three heterogeneous graph datasets where InfoMotif outperforms a number
of state-of-the-art methods with notable performance gains (5% accuracy) on average. Our
qualitative analysis indicates stronger gains for nodes with sparse training labels and diverse
attributes in local neighborhood structures.

We organize the rest of the paper as follows. In Sect. 3, we present the problem formula-
tion, and introduce preliminaries on GNNs and network motifs. We describe our proposed
framework InfoMotif in Sect. 4 with architectural details in Sect. 5, present experimental
results in Sect. 6, discussions in Sect. 7, and finally conclude in Sect. 8.

2 Related work

Our work is related to semi-supervised learning approaches over homogeneous and hetero-
geneous graphs, and recent advances in the paradigm of self-supervised learning.

HomogeneousGraphsSemi-supervised learningover graphs is awell-studiedproblem,where
the goal is to classify nodes in a graph given a small set of labeled examples. The most
popular label spreading [70, 71] techniques propagate labels through linked nodes in the
graph based on smoothness assumptions. Graph neural networks (GNNs) generalize label
spreading through localized message passing over feature-rich node neighborhoods and have
achieved state-of-the-art results in several benchmarks [22]. GNNs learn node representations
by recursively aggregating features from local neighborhoods in an end-to-end manner, with
diverse applications, including information diffusion prediction [50], friend suggestions [44],
social recommendation [23], and community question answering [29]. Graph convolutional
networks (GCNs) [22] learn degree-weighted aggregators, which can be interpreted as a
special formof Laplacian smoothing [25].Manymodels generalizeGCNwith awide range of
neighborhood aggregators, e.g., self-attentions [46, 57],mean andmaxpooling functions [15],
etc. However, all these models learn node representations that inherently overfit to the k-hop
neighborhood around each node.

There are two broad categories of prior graph representation learning approaches that
aim to overcome the key limitations of oversmoothing and localization in GNNs: non-local
GNNs that capture contributions from distant nodes in the graph and structural role learning
techniques that enhance the structural distinguishability of the learned node representations.

Non-local methods expand the propagation range of GNNs to aggregate node representa-
tions of differing localities, e.g., JKNet [64] uses skip-connections to vary the influence radius
per node, PGNN [65] captures global network positions via shortest-paths, andDGI [58]max-
imizes MI between node representations and a summary representation of the entire graph.
However, they either operate on a local scale [33] or learn coarse structural properties, which
limits their ability to capture features from distant yet structurally similar nodes.

Role-awaremodels embed structurally similar nodes close in the latent space, independent
of network position [17, 41]. A few approaches [55] employ strict definitions of structural
equivalence to embed nodes with identical local structures to the same point in the latent
space, while others utilize structural node features (e.g., node degrees, motif count statis-
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tics) to extend classical proximity-preserving embedding methods, e.g., feature-based matrix
factorization [40] and random walk methods [36]. Notably, a few methods design structural
GCNs via motif adjacency matrices [24, 48, 49]. However, all these methods model struc-
tural roles without considering node attributes. A related direction is higher-order network
representation learning that models proximity via network motifs [8]. However, such repre-
sentations are highly localized and cannot identify structurally similar nodes independent of
network proximity. In contrast, we regularize GNNs to learn attributed structural roles based
on the covariance of attributes inmotifs, thus simultaneously enhancing the distinguishability
of node representations and identifying correspondences between distant nodes.

Heterogeneous Graphs Representation learning techniques over heterogeneous graphs pri-
marily focus onpreserving structural information indicated by the type semantics inmeta-path
or meta-graph structures. A few popular approaches include node representation learning by
capturing proximities between node pairs connected via meta-graphs [53, 68] and meta-path
guided randomwalks [10, 12]. Recently, graph neural networks have been generalized to het-
erogeneous graphs through message passing aggregation over local neighborhoods induced
via specific node types [19, 67], meta-paths [13, 60, 69] and meta-graphs [49]. While these
advances effectively incorporate rich heterogeneous semantics into message-passing GNNs,
the key limitation due to localization remains. To our knowledge, structure role learning in
heterogeneous graphs is unexplored and ours is the first to examine structural role learning
in GNNs with rich type semantics and attributes.

Self-supervised Learning The emerging paradigm of self-supervised learning [18] aims to
alleviate the need for large volumes of labeled examples by extracting supervision signals
from the intrinsic structure of the raw data. For instance, auxiliary supervision signals for
images are created by rotating, cropping and colorizing images, followed by new training
objectives to facilitate representation learning [5].One empirically effective strategy ismutual
information maximization [3] to maximize agreement across different views of the data. A
few recent advances extend self-supervised learning [43, 45] to graph representation learning
by exploiting structural properties such as node degree, proximity [32], and attributes [21],
for model pre-training [20, 26, 34, 63, 66]. In our work, we design self-supervised learning
objectives to regularize graph neural networks for node classification by learning attribute
correlations in higher-order connectivity patterns (typed and untyped motif structures).

3 Preliminaries

In this section, we formalize semi-supervised node classification on graphs via graph neural
networks and introduce network motifs in homogeneous and heterogeneous graphs.

3.1 Problem definition

LetG = (V, E) be an attributed graph, with nodesV and edges E ∈ V×V . NoteV = VL∪VU ,
the sets of labeled (VL ) and unlabeled (VU ) nodes in the graph. LetN (v) denote the neighbor
set of node v ∈ V in G, and X ∈ R

|V|×F denotes the attribute matrix with rows xv ∈ R
F for

node v ∈ V . In our work, the graph may be heterogeneous with multiple types of nodes and
edges; in such a scenario, we have a node type mapping ψ : V �→ TV where TV is the set of
node types that identifies each node in V with a type in TV , and a corresponding edge type
mapping ξ : E �→ TE where TE is the set of edge types. Each labeled node v ∈ VL belongs
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to one of C classes, encoded by a one-hot vector yv ∈ B
C (B = {0, 1}) where C denotes the

number of classes. Our goal is to predict the labels of the unlabeled nodes v ∈ VU . This is the
familiar transductive or semi-supervised learning setup for node classification in graphs [70].

3.2 Graph neural networks

Graph neural networks (GNNs) use multiple layers to learn node representations. At each
layer l > 0, where 0 is the input layer, GNNs compute a representation for node v by aggre-
gating features from its neighborhood, through a learnable aggregator function fθ,l per layer.
Using k layers allows for the k-hop neighborhood of a node to influence its representation.

Let hv,l−1 ∈ R
D denote the representation of node v in layer l − 1. The l-th layer follows

a message passing rule:

hv,l = fθ,l

(
hv,l−1, {hu,l−1}

)
, u ∈ Nv (1)

Equation 1 says that the node embedding hv,l ∈ R
D for node v at the l-th layer is a

nonlinear aggregation fθ,l of the embeddings from layer l − 1 of node v and the embeddings
of immediate network neighbors u ∈ N (v) of node v. The function fθ,l defines the message
passing mechanism at layer l, and we can use a variety of aggregator architectures, including
graph convolution [22], graph attention [57], and pooling [15]. Let F denote the cardinality of
node features at the input layer, and D indicate the embedding size after the final GNN layer.
Thus, the node representation for v at the input layer is hv,0 (i.e., l = 0), where hv,0 = xv

and xv ∈ R
F . We designate the representation of node v at the final GNN layer hv ∈ R

D , as
its base GNN representation. In this work, we use GNNs as a collective term for networks
that operate over graphs using localized message passing, as opposed to spectral methods [6]
that learn convolutional filters from the entire graph.

3.3 Networkmotifs

Network motifs are a general class of higher-order connectivity patterns, with a history of use
in network science [28, 30]. A motif has several topologically equivalent appearances in the
network called motif instances. Prior work [37, 42] shows how to efficiently compute motif
instances for large graphs.

Definition 1 (Network Motif ) A network motif Mt = (Vt , Et ) is a connected, induced sub-
graph consisting of a subset Vt ⊂ V and Et = {e ∈ E | e = (u, v), u, v ∈ Vt }. Let kt denote
the number of nodes in network motif Mt ; that is, kt = |Vt |.

In this work, we consider 3-node connected network motifs, e.g., Fig. 2 shows all 3-node,
topologically distinct, directed (e.g., citations) and undirected, connected network motifs.

In a heterogeneous graph, nodes/edges are ofmany different typeswhichmakes it essential
to explicitly (and jointly) model the connectivity patterns and the participating types. We
define typed network motifs that generalize network motifs through additional constraints
on the types of participating nodes, below:

Definition 2 (TypedNetworkMotif ).A typed networkmotif denoted byMt = (Vt , Et , ψt , ξt )

is a connected, induced subgraph consisting of a subset Vt ⊂ V and Et = {e ∈ E | e =
(u, v), u, v ∈ Vt } such that node and edge typemappingsψt = ψ |Et and ξt |Vt are restrictions
of ψ and ξ to Vt and Et , respectively, and kt = |Vt | is the number of nodes in Mt .
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Fig. 2 Topologically distinct, directed (M1 to M5) and undirected (M6 to M7) 3-node, connected, network
motifs

(a) (b)

Fig. 3 a Heterogeneous network schema of bibliographic network DBLP with three node types: author (A),
paper (P), and venue (V) and three edge types A → P, P → V , and P → P . bExamples of 3-node connected
typed network motifs

We assume that the given graph G has a set of unique associated network motifs M =
{M1, . . . , MT }.

Definition 3 (Motif Instance). Let It be an induced subgraph of G. We define It to be a motif
instance of Mt if It is isomorphic to Mt . A motif Mt can have several motif instances in G.
While each such motif instance has a unique node set, two motif instances can share nodes.
We denote the set of unique instances of Mt in G that contain node v as Iv(Mt ).

3.4 Model regularization

We plan to use these local structural properties (i.e., network motifs) to regularize the graph
neural model during training. Typically, we train GNNs byminimizing the cross-entropy loss
LB , between model predictions ŷv ∈ R

C and ground-truth labels yv ∈ B
C of training nodes

in v ∈ VL , defined by:

LB = −
∑
v∈VL

C∑
c=1

yv,c log ŷv,c (2)

where the c-th index of the one-hot vector ŷv,c refers to the probability that v belongs to
the true class c. Notice that the loss LB is agnostic to any local structural properties (e.g.,
mixing patterns in social networks [31]) thatmay be indicative of the true node class. Thus,we
develop amodified loss L ′

B = LB+λLR , where LR is the regularization loss that incorporates
attributed motif structure and λ is a constant. Our goal is to design LR to overcome the two
limitations of message-passing models: localized and over-smoothed node representations.
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4 InfoMotif framework

In this section, we first discuss the structural properties of GNNs to motivate the notion of
attributed structural roles. In Sect. 4.2, we present our motif-based self-supervised learning
framework InfoMotif to regularize GNNs based on a single motif. Finally, in Sect. 4.3, we
introduce our overall framework with a novel multi-motif training curriculum.

4.1 Motivating insights: attributed structural roles

A k-layer GNN computes a localized representation hv,k for each node v that incorporates
information from its k-hop neighborhood, denoted by Nk(v). For a node set S ⊆ V , let
Nk(S) = ⋃

v∈S Nk(v) define its k-hop neighborhood, and X(S) denote its set of input node
features. Let Y(VL) comprise the training labels of nodes in the labeled set VL . For a k-layer
GNN trained on VL using loss LB (Eq. 2), let�∗ = {�1, . . . , �k} be the optimal parameters
computed by its training algorithm. Now, we have the following proposition.

Proposition 1 �∗ is a function of X(Nk(VL)),Y(VL) and changes in inputs X(V \Nk(VL))

will not affect �∗.

Proof Sketch. By an induction argument, the loss LB can be written as g(�1, . . . ,

�k,Y(VL), X(Nk(VL)) for some function g(·). Thus, when the GNN is trained on LB using
gradient updates, �∗ must be independent of X(V \ Nk(VL)).

Note that addition of a standard regularization term (e.g., L1 or L2) only impacts
{�1, . . . , �k}; the overall loss still remains independent of V \ Nk(VL), satisfying proposi-
tion 1.

Thus, the optimal parameters of a k-layer GNN are only affected by node features in the
k-hop neighborhood Nk(VL) of the labeled set VL , i.e., the features and connectivities of
nodes in V \ Nk(VL) are ignored in the training process.

Let the k-hop neighborhood of class c be Nk(VL(c)) where VL(c) = {v ∈ VL : yvc = 1}
is the set of nodes labeled with class c. Let LB(c) be the supervised loss term specific to class
c. Now, the corollary directly follows from proposition 1:

Corollary 1 If node v /∈ Nk(VL(c)), the k-hop neighborhood of class c, then the loss LB(c)
is independent of v.

The above corollary states that gradient updates from the supervised loss LB(c) for class
c cannot reach nodes that lie outside the k-hop neighborhood of class c, i.e., Nk(VL(c)).

To illustrate its implications, we revisit Fig. 1. Since node c lies beyond the 2-hop neigh-
borhood of node b, node c does not affect the training loss at node b (which belongs to class
2). Thus, despite nodes c and b having identical covariation of attributes and structure (blue
neighbors form triangles), node c does not influence the training loss for all nodes with class
2 (Table 1).

4.2 Self-supervised single motif regularization

In this section, we introduce InfoMotif, a framework to regularize node representations of
the base GNN by exploiting the covariance of node attributes and motif structures. We
define attributed structural roles by assigning the same role to nodes that participate in motif
instances over covarying sets of attributes. Compared to prior role-aware models [36] that
discover structurally similar nodes agnostic to attributes, we define roles based on attribute
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Table 1 Notation

Symbol Description

M Set {M1, . . . , MT } of T network motifs

Iv(Mt ) Set of instances of motif Mt in G that contain node v

hv,l Representation of node v at layer l of GNN

hv Base GNN representation of node v (final layer)

htv Motif-gated representation of node v for motif Mt

ev,It Instance-specific representation of v in It ∈ Iv(Mt )

sv,t Motif-level representation of node v for motif Mt

zv Final representation of node v

αvt Task-specific importance of motif Mt to node v

βv Novelty score for training node v ∈ VL

Fig. 4 Architecture diagram of InfoMotif depicting the model components: base GNN fθ,l with k layers
(bottom left), motif-based mutual information maximizing regularizers LtM I (top right), and attention module
to compute final node representations zv (bottom right). Instances of motif M1 are shown in the graph (top
left) with textured lines and colors indicate node attributes

occurrence in higher-order connectivity structures. In heterogeneous graphs, roles further
incorporate semantics of node and edge types described by the connectivity structures of
typed network motifs.

Now, we describe our self-supervised learning strategy to learn attribute covariance for a
single motif. In the next section, we extend these arguments to handle multiple motifs.

Motif-based mutual information

We first consider a single network motif type Mt ∈ M and a specific node v ∈ V to
learn attribute covariance across instances Iv(Mt ) that contain v in the graph. To learn
attributed structural roles, it is necessary to contrast the attributed instances of motif Mt

against attributed node combinations that are not present in any instances of Mt .
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We maximize the motif-based mutual information (MI) between a motif-level repre-
sentation of v and corresponding instance-specific representations centered at v. (Detailed
descriptions are presented inSects. 5.2 and5.3.)By introducingmotif-basedMImaximization
as a regularizer, the GNN is encouraged to learn discriminative statistical correspondences
between nodes that participate in instances of the same motif. Motif-based MI maximiza-
tion is an example of the broader paradigm of self-supervised learning that derives auxiliary
supervision signals from the intrinsic structure (e.g., connectivity patterns in a networkmotif)
of the underlying data.

We first adapt the base GNN representation hv (see Sect. 3.2), specific tomotifMt through
a motif gating function f tgate : RD �→ R

D resulting in a gated embedding htv . Then, we
introduce a motif instance encoder f tenc : RD × R

(kt×D) :�→ R
D to compute the instance-

specific representation ev,It ∈ R
D of node v conditioned on other co-occurring nodes in

instance It ∈ Iv(Mt ). Finally, themotif-level representation sv,t ∈ R
D of node v summarizes

the set of instance-specific representations {ev,It }It∈Iv(Mt ) through a permutation-invariant
motif readout function f tread(·), e.g., averaging or pooling functions.

For each node v ∈ V , we maximize motif-based mutual information Lt
M I between its

instance-specific representations {ev,It }It∈Iv(Mt ) andmotif-level representation sv,t , by defin-
ing Iψ t as a mutual information estimator for motif Mt that is shared across all nodes. The
resulting objective is given by:

Lt
M I (θ, φt , ψt ) = 1

|V|
∑
v∈V

∑
It∈Iv(Mt )

Iψt (ev,It ; sv,t ) (3)

where θ and φt denote the parameters of the layers { fθ,l}kl=1, and motif-specific transforms
{ f tgate, f tenc, f tread}, respectively. By maximizing MI across all instances of motif Mt in
the graph through a shared MI estimator I tψ , we enable the GNN to learn correspondences
between a pair of potentially distant nodes that participate in instances of motif Mt .

Mutual information maximization

Following neural MI estimation methods [4, 18], we model the estimator Iψ t as a discrim-
inator network that learns a decision boundary to accurately distinguish between positive
samples drawn from the joint distribution and negative samples drawn from the product of
marginals. We train a contrastive discriminator network Dt

ψ : R
D × R

D �→ R
+, where

Dt
ψ(ev,It , sv,t ) denotes the probability score assigned to this instance-motif pair. The posi-

tive samples (ev,It , sv,t ) for Dt
ψ are the representations of observed instances It ∈ Iv(Mt )

of motif Mt paired with the motif-level representation sv,t . The negative samples (ev, Ĩt , sv,t )

are derived by pairing sv,t with the representations of negative instances Ĩt sampled from
a distribution PN ( Ĩt |Mt ). The discriminator Dt

ψ is trained on a noise-contrastive objective
Lt
M I between samples from the joint (positive pairs), and the product of marginals (negative

pairs), which is defined as:

Lt
M I = 1

|V|
∑
v∈V

Lt
M I (v) = − 1

2Q|V|
∑
v∈V

Q∑
i=1

[
EIt log Dt

ψ(ev,It , sv,t )

+ E Ĩt log(1 − Dt
ψ(ev, Ĩt , sv,t ))

]
(4)
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where Q is the number of observed motif instances sampled per node. This objective maxi-
mizesMI between sv,t and {ev,It }It∈Iv(Mt ) based on the Jensen–Shannon divergence between
their joint distribution and product of marginals [58].

We design the negative sampling distribution PN ( Ĩt |Mt ) to learn attribute covariance in
instances of motif Mt . For each positive instance It , the generated negative instance Ĩt is
topologically equivalent but contains attributes that do not occur in instances of Mt in G.
By contrasting the observed instances of Mt against fake instances with perturbed attributes,
Dt

ψ learns attributed structural roles with respect to motif Mt .

4.3 Multi-motif regularization framework

Now, we extend our framework for any graph that includes a set of motifs M =
{M1, . . . , MT }. A typical way to include regularizers (Eq. 4) from multiple motifs is given
by:

L
′ = LB + λL

′
MI = LB + λ · 1

T

T∑
t=1

Lt
M I (5)

where λ is a tunable hyper-parameter to balance the supervised task loss LB and motif
regularizers. Intuitively, each motif Mt ∈ M is a connectivity pattern that can be viewed as
defining one kind of structural role, e.g., bridge nodes. Each motif has a different significance
toward the learning task. Thus, a multi-motif framework should automatically identify the
significance of different motifs without manual hand tuning.

In addition, real-world networks exhibit heavy-tailed degree and community distribu-
tions [2], which manifest as skewed (imbalanced) motif occurrences among nodes as well as
across motif types. This further complicates the learning process of incorporating multiple
motifs as regularizers. We identify three key aspects task, node, and skew for a multi-motif
framework:

– Task Distinguish the significance of different motifs to compute representations condi-
tioned on the learning task.

– Node Expressive power to control the extent of regularization exerted by each motif at a
node-level granularity.

– SkewAdapt to varying levels ofmotif occurrence skewwithout any distributional assump-
tions on the input graph.

To address these objectives, we first describe our approach to compute final node represen-
tations conditioned on multiple motifs, followed by two novel online reweighting strategies.

Task-driven representations

The base GNN is trained by a supervised task loss LB (Eq. 2) over the labeled node set
VL . We instead aggregate the set of motif-gated representations (htv for motif Mt ∈ M),
to compute the final representation zv ∈ R

D for node v. We learn attention weights αvt to
characterize the task-driven importance of motif Mt to node v and compute zv through a
weighted average, given by:

zv =
T∑
t=1

αvthtv αvt = exp
(
p · htv

)
T∑

t ′=1
exp

(
p · ht ′v

) (6)
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where p ∈ R
D defines the attention function and is learned by optimizing the final rep-

resentations {zv}v∈VL of labeled nodes VL using the supervised loss LB (Eq. 2). The final
representation zv of each node v ∈ V is used for classification.

Node-sensitive motif regularization

Instead of using static uniform weights to incorporate motif regularizers (Eq. 5), we contex-
tually weight the contributions of different motif regularization terms (Eq. 4) at a node-level
granularity through the attention weights αvt of motif Mt for node v.

LMI = 1

nT

T∑
t=1

∑
v∈V

αvt L
t
M I (v) (7)

The loss LMI varies the extent of regularization per node in proportion to the task-specific
importance αvt of motif Mt to node v. Notice that while the attention function is learned by
training the final representations zv of labeled nodes v ∈ VL on the supervised loss LB , the
motif-regularization loss LMI (which operates on all nodes) re-weights each motif loss term
per node with the estimated attention weights.

Algorithm 1 The framework of InfoMotif-GNN.

Input: Graph G, Labeled node set VL , Base GNN { fθ,l }kl=1
Output: Motif-regularized embedding zv for each node v ∈ V
1: Initialize sample novelty weights βv = 1 ∀ v ∈ VL
2: while not converged do
3: � Supervised loss over labeled node set VL
4: for each batch of nodes VB ⊆ VL do
5: Fix sample weights {βv}v∈VB

and optimize LS on VB using mini-batch gradient descent (Eq. 9).
6: end for
7: Compute motif attention weights {αv}v∈V (Eq. 6).
8: � Motif-based InfoMax loss over entire node set V
9: for each batch of nodes VB ⊆ V do
10: Fix motif weights {αv}v∈V and optimize LMI on VB using mini-batch gradient descent (Eq. 7)
11: end for
12: Compute sample weights {βv}v∈VL

(Eq. 8).
13: end while
14: Compute zv ∈ R

D ∀ v ∈ V (Eq. 6)

Skew-aware sample weighting

Priorwork in curriculumandmeta learning has shown the importance of re-weighting training
examples to overcome training set biases [35]. In particular, re-weighting strategies that
emphasize harder examples are effective at handling imbalanced data distributions [7]. We
propose a novelty-driven re-weighting strategy to handle skew in motif occurrences across
nodes and motif types.

The novelty βv of node v is a function of its motif distribution, i.e., novel nodes contain
uncommon motif types in their neighborhood, which in turn reflects in their attention weight
distribution over motifs. Let αv ∈ R

T denote the vector of attention weights for a labeled
node v over the motif setM. Now, the novelty βv of node v is high if its motif distribution αv
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significantly diverges from those of other nodes. We quantify βv by the deviation (measured
by Euclidean distance) of αv from the mean motif distribution of labeled nodes v ∈ VL .

βv = exp(‖αv − μ‖2)∑
u∈VL

exp(‖αu − μ‖2) μ = 1

|VL |
∑
v∈VL

αv (8)

The novelty scores are normalized over VL using a softmax function, to give nonnegative
sample weights 0 < βv ≤ 1. We now define the novelty-weighted supervised loss LS as:

LS = −
∑
v∈VL

βv

C∑
c=1

yvc log ŷvc (9)

In contrast to the original supervised loss LB (Eq. 2), the re-weighted objective LS induces
a novelty-weighted training curriculum that progressively focuses on harder samples.

Model training

The overall objective of InfoMotif is composed of two terms, the re-weighted supervised loss
LS (Eq. 9), and motif regularizers (Eq. 7), given by:

L = LS + λLMI (10)

In practice, we optimize LS and LMI alternatively at each training epoch, which removes the
need to tune balance hyper-parameter λ. Algorithm 1 summarizes the training procedure.

Complexity analysis

On the whole, the complexity of our model is O(F) + O(nT QD + nT D2) where O(F) is
the base GNN complexity, T is the number of motifs, Q is sampled instance count per motif,
and D is the latent space dimensionality. Since T � n and Q � n, the added complexity of
our framework scales linearly with respect to the number of nodes.

5 Model details

We now discuss the architectural details of our framework: motif instance encoder, gating,
readout, and discriminator.

5.1 Motif gating

We design a pre-filter with self-gating units (SGUs) to regulate information flow from the
base GNN embedding hv to the motif-based regularizer. The SGU f tgate(·) for motif Mt

learns a nonlinear gate to modulate the input at a feature-wise granularity through dimension
re-weighting, defined by:

htv = f tgate(hv) = hv � σ(Wt
ghv + btg) (11)

where Wt ∈ R
D×D,bt ∈ R

D are learned parameters, � denotes the element-wise product
operation, and σ is the sigmoid nonlinearity. The self-gating mechanism effectively serves
as a multiplicative skip-connection [9] that facilitates gradient flow from the motif-based
regularizer to the GNN.
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5.2 Motif instance encoder

The encoder fenc(·) computes the instance-specific representation ev,It for node v con-
ditioned on the gated representations {htu}u∈It of the nodes in instance It . We apply
self-attentions [56] to compute a weighted average of the gated node representations {htu}u∈It
in It . Specifically, fenc attends over each node u ∈ It to compute attention weight αu by
comparing its gated representation htu with that of node v, htv .

ev,It =
∑
u∈It

αuhtu αu = exp
(
at · [htu ||htv]

)
∑

u′ ∈It exp
(
at · [ht

u′ ||htv]
) (12)

where at ∈ R
2D is a weight vector parameterizing the attention function and || denotes

concatenation. We empirically find the self-attentional encoder to outperform other pooling
alternatives.

5.3 Motif readout

The readout function f tread(·) summarizes the set of instance-specific representations
{ev,It }It∈Iv(Mt ) to compute the motif-level representation sv,t . We use a simple averaging
of instance-specific representations to define f tread(·) as follows:

sv,t = f tread

(
{ev,It }It∈Iv(Mt )

)
= σ

( ∑
It∈Iv(Mt )

ev,It

|Iv(Mt )|
)

where σ is the sigmoid nonlinearity. We adopt batch-wise training with motif instance sam-
pling (∼ 20 per node) to compute sv,t . Sophisticated readout architectures [59] are more
likely necessary to handle larger sample sizes.

5.4 Motif discriminator

The discriminator Dt
ψ learns a motif-specific scoring function to assign higher likelihoods to

observed instance-motif pairs relative to negative examples. Similar to prior work [47, 58],
we use a bilinear scoring function defined by:

Dt
ψ(ev,It , s

t
v) = σ(ev,It · W t

ds
t
v) (13)

whereW t
d ∈ R

D×D is a trainable scoring matrix and σ is the sigmoid nonlinearity to convert
raw scores into probabilities of (ev,It , s

t
v) being a positive example for motif Mt .

6 Experiments

We present extensive quantitative and qualitative analyses on multiple diverse datasets span-
ning homogeneous and heterogeneous graphs. We first introduce datasets, baselines, and
experimental setup (Sects. 6.1, 6.2, and 6.3). We propose four research questions to guide
our experiments:

(RQ1) How does InfoMotif compare with state-of-the-art graph neural networks and
embedding learning methods on node classification over homogeneous graphs?
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Table 2 Dataset statistics of homogeneous network benchmarks, including three assortative citation [51]
networks and three dis-assortative air-traffic [36] networks

Citation networks Air-traffic networks
Dataset Cora Citeseer PubMed Brazil Europe USA

# Nodes 2485 2110 19,717 131 399 1190

# Edges 5069 3668 44,324 1038 5995 13,599

# Attributes 1433 3703 500 – – –

# Classes 7 6 3 4 4 4

Ground-truth classes in citation networks exhibit attribute homophily; ground-truth classes in flight networks
indicate node structural roles

Table 3 Dataset statistics of three
heterogeneous graphs across
bibliographic and movie
networks, with multiple node and
edge types

Dataset DBLP-A DBLP-P Movie

# Nodes 11,170 35,770 10,441

# Edges 24,846 131,636 99,509

# Attributes 4479 11,680 4577

# Node Types 3 3 4

# Classes 4 10 6

Schemas are shown in Figs. 3a and 5a

(RQ2) Is InfoMotif effective for node classification on heterogeneous information networks
(multiple types of nodes and edges) compared to state-of-the-art approaches?

(RQ3) How do the different architectural design choices and training strategies in Info-
Motif impact performance?

(RQ4) What is the impact of node degree, local training label sparsity, and local attribute
diversity, on the classification performance of InfoMotif?

(RQ5) How do the motif-based regularization strategies and associated hyper-parameters
in InfoMotif affect model training time and performance?

6.1 Datasets

Our experiments are designed toward semi-supervised node classification on nine real-world
benchmark datasets, divided across homogeneous and heterogeneous networks.

In homogeneous graphs, we experiment on two diverse types of datasets: citation networks
that exhibit stronghomophily andair-trafficnetworks that dependon structural roles (Table 2).

– CitationNetworksWeconsider three benchmarkdatasets,Cora,Citeseer, andPubMed [51],
where nodes correspond to documents and edges represent citation links. Each document
is associated with a bag-of-words feature vector, and the task is to classify documents
into different research topics.

– Air-Traffic NetworksWe use three undirected networks Brazil, Europe, and the USA [36]
where nodes correspond to airports and edges indicate the existence of commercial flights.
Class labels are assigned based on activity level, measured by the cardinality of flights
or people that passed the airports. We use one-hot indicator vectors as node attributes.
Notice that class labels are related to the role played by airports.

We conduct experiments on three real-world datasets over heterogeneous graphs whose
statistics are shown in Table 3:
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(b)(a)

Fig. 5 a Heterogeneous network schema of movie network with four node types: actor (A), movie (M), user
(U), and term (T) and four edge types A → M,U → M, T → M , and U → T . b Examples of 3-node
connected typed network motifs

Fig. 6 Classification accuracy with respect to node degree. InfoMotif has consistent gains across all segments
with higher gains for low-to-medium degree nodes (quartiles Q1 and Q2)

– DBLP-A This is a bibliographic network composed of 3 node types: author (A), paper
(P), and venue (V ), connected by three link types: P → P , A → P , and P → V
(Fig. 3a). We use a subset of DBLP [54] with text attributes of papers to classify authors
based on their research areas.

– DBLP-P This dataset has the same schema as DBLP-A, but the learning task is to classify
research papers into ten categories, which are obtained from Cora [27].

– MovieWe useMovieLens [16] with four node types: movie (M), user (U ), actor (A), and
tag (T ) linked by four types: U → M , A → M , U → T , and T → M , with attributes
for actors and movies. The classification task is movie genre prediction (Fig. 4).

6.2 Baselines

We first introduce baseline methods designed for learning over homogeneous graphs, orga-
nized into four categories based on whether they are proximity-based vs. structural, and the
paradigm of embedding learning vs. graph neural networks:

– Proximity-based embedding methods Conventional methods, node2vec [14] that learns
from second-order randomwalks, and motif2vec [8] that models higher-order proximity.

123



Self-supervised role learning for graph neural networks 2107

– Structural embedding methods Structural role-aware models struc2vec [36], Graph-
Wave [11], and DRNE [55].

– Standard Graph Neural Networks State-of-the-art GNN models based on localized mes-
sage passing: GCN [22], GraphSAGE [15], GAT [57], JKNet [64], and DGI [58].

– StructuralGraphNeural NetworksMotif-basedMotif-CNN [48],MCN [24], and degree-
specific DEMO-Net [61].

Next, we introduce graph neural networks designed specifically for semi-supervised learn-
ing over heterogeneous graphs.

– Heterogeneous Graph Neural Networks State-of-the-art metapath-based GNN models
MAGNN [13], HAN [60], and metagraph-aware GNN model Meta-GNN [49].

6.3 Experimental setup

Wetested our framework InfoMotif by integratingGCN, JKNet, andGATasbase graphneural
networks for motif-based regularization. We only consider the largest connected component
in each dataset and evaluate different train/validation/test splits to fairly compare different
models [52]. We create 10 random data splits per training ratio and evaluate the mean test
classification accuracy along with standard deviation.

All experimentswere conducted on aTeslaK-80GPUusing PyTorch.Our implementation
of InfoMotif is publicly available.2 We train two-layer base GNNs for GCN and GAT (8
attention heads per layer) models while training the base JKNet using 4 GCN layers and
maxpool layer aggregation. The model is trained for a maximum of 100 epochs with a batch
size of 256 nodes with Adam optimizer. We also apply dropout for model regularization with
a rate of 0.5 and tune the learning rate in the range {10−4, 10−3, 10−2}.

6.4 Homogeneous graphs (RQ1)

In homogeneous graphs, we train InfoMotif using the set of all directed 3-node motifs in
citation networks and undirected 3-node motifs in air-traffic networks (Fig. 2). For citation
networks, we train base GNNswith layer sizes of 256 each, while using 64 for the smaller air-
traffic networks. We evaluate different train/validation/test splits (training ratios of 20% and
40%) and report experimental results comparing InfoMotif with three base GNNs, against
competing baselines on citation and air-traffic networks, in Tables 4 and 5, respectively.

In citation networks, GNNs generally outperform conventional methods. Moreover,
attribute-agnostic structural embedding methods perform poorly and structural GNNs per-
form comparably to standard GNNs. Citation networks exhibit strong attribute homophily in
local neighborhoods; thus, structural GNNs do not providemuch benefits over state-of-the-art
message-passing GNNs. In contrast, our framework InfoMotif regularizes GNNs to discover
distant nodes with similar attributed structures across the entire graph. InfoMotif achieves
consistent average accuracy gains of 3% for all three variants.

In air-traffic networks, structural embedding methods outperform their proximity-based
counterparts, with a similar trend for structural GNNs. Here, class labels rely more on node
structural roles than the labels of neighbors. JKNet outperforms competing GNNs, signifying
the importance of long-range dependencies in air-traffic networks. InfoMotif enables GNNs
to learn structural roles agnostic to network proximity and achieves significant gains of 10%
on average across all datasets.

2 https://github.com/CrowdDynamicsLab/InfoMotif.

123

https://github.com/CrowdDynamicsLab/InfoMotif


2108 A. Sankar et al

Ta
bl
e
4

N
od
e
cl
as
si
fic
at
io
n
re
su
lts

(%
te
st
ac
cu
ra
cy
)
on

as
so
rt
at
iv
e
ci
ta
tio

n
ne
tw
or
ks

us
in
g
10

ra
nd
om

tr
ai
n/
va
lid

at
io
n/
te
st
sp
lit
s
pe
r
tr
ai
ni
ng

ra
tio

(2
0%

an
d
40

%
)

T
ra
in
in
g
ra
tio

D
at
a

C
or
a

C
ite
se
er

Pu
bM

ed

X
Y

20
%

40
%

20
%

40
%

20
%

40
%

P
ro
xi
m
it
y-
ba

se
d
gr
ap

h
em

be
dd

in
g
m
et
ho

ds

N
od

e2
V
ec

[1
4]

75
.7

±
0.
5

76
.1

±
0.
5

68
.1

±
0.
5

69
.1

±
0.
6

80
.1

±
0.
6

80
.2

±
0.
6

M
ot
if
2V

ec
[8
]

79
.0

±
0.
4

79
.2

±
0.
4

66
.6

±
0.
4

67
.1

±
0.
3

79
.8

±
0.
2

79
.8

±
0.
4

St
ru
ct
ur
al

gr
ap

h
em

be
dd

in
g
m
et
ho

ds

St
ru
ct
2V

ec
[3
6]

35
.4

±
1.
0

37
.6

±
1.
3

31
.2

±
0.
8

35
.1

±
0.
9

48
.5

±
0.
3

49
.2

±
0.
4

G
ra
ph

W
av
e
[1
1]

39
.5

±
2.
1

41
.1

±
1.
5

38
.5

±
1.
2

40
.6

±
0.
9

43
.0

±
2.
0

43
.3

±
1.
3

D
R
N
E
[5
5]

34
.9

±
1.
5

36
.5

±
1.
5

30
.8

±
1.
2

32
.2

±
1.
2

40
.4

±
0.
7

41
.6

±
0.
4

St
an

da
rd

gr
ap

h
ne
ur
al

ne
tw
or
ks

G
C
N
[2
2]

�
�

81
.6

±
0.
5

82
.0

±
0.
4

75
.8

±
0.
5

76
.6

±
0.
3

85
.7

±
0.
7

86
.1

±
0.
5

G
A
T
[5
7]

�
�

80
.9

±
0.
7

81
.4

±
0.
2

74
.5

±
0.
7

75
.5

±
0.
7

83
.3

±
0.
3

84
.2

±
0.
3

G
ra
ph
SA

G
E
[1
5]

�
�

81
.3

±
0.
3

83
.5

±
0.
3

72
.9

±
0.
3

73
.8

±
0.
2

86
.6

±
0.
2

87
.2

±
0.
3

JK
N
et
[6
4]

�
�

81
.3

±
0.
8

83
.6

±
0.
8

71
.5

±
0.
8

72
.5

±
0.
7

82
.2

±
0.
4

83
.8

±
0.
5

D
G
I
[5
8]

�
76

.2
±

0.
8

77
.3

±
0.
9

74
.5

±
0.
7

74
.7

±
0.
7

78
.2

±
0.
9

78
.5

±
0.
9

St
ru
ct
ur
al

gr
ap

h
ne
ur
al

ne
tw
or
ks

D
em

oN
et
[6
1]

�
�

81
.0

±
0.
6

82
.4

±
0.
5

67
.9

±
0.
7

68
.5

±
0.
6

79
.5

±
0.
4

80
.5

±
0.
4

M
ot
if
-C
N
N
[4
8]

�
�

81
.6

±
0.
5

82
.8

±
0.
5

73
.4

±
0.
3

76
.8

±
0.
3

87
.3

±
0.
1

87
.5

±
0.
1

M
C
N
[2
4]

�
�

81
.1

±
0.
9

82
.4

±
0.
8

73
.2

±
0.
4

75
.9

±
0.
7

85
.2

±
0.
6

85
.9

±
0.
5

M
ot
if
-r
eg
ul
ar
iz
ed

gr
ap

h
ne
ur
al

ne
tw
or
ks

(I
nf
oM

ot
if
)

In
fo
M
ot
if
-G

C
N

�
�

85
.7

±
0.
4

87
.4

±
0.
4

77
.7

±
0.
5

78
.5

±
0.
5

87
.5

±
0.
2

88
.3

±
0.
2

In
fo
M
ot
if
-J
K
N
et

�
�

85
.5

±
0.
3

86
.5

±
0.
5

74
.5

±
0.
8

76
.7

±
0.
9

87
.0

±
0.
2

87
.9

±
0.
3

In
fo
M
ot
if
-G

A
T

�
�

85
.5

±
0.
3

87
.2

±
0.
7

76
.5

±
0.
5

77
.0

±
0.
4

85
.9

±
0.
4

86
.2

±
0.
5

X
an
d
Y
de
no
te
th
e
us
e
of

no
de

at
tr
ib
ut
es

an
d
tr
ai
ni
ng

la
be
ls
,r
es
pe
ct
iv
el
y,
to
w
ar
d
re
pr
es
en
ta
tio

n
le
ar
ni
ng
.W

e
re
po
rt
m
ea
n
ac
cu
ra
cy

an
d
st
an
da
rd

de
vi
at
io
n
ov
er
5
tr
ia
ls
.W

e
sh
ow

G
ra
ph
SA

G
E
re
su
lts

w
ith

th
e
be
st
pe
rf
or
m
in
g
ag
gr
eg
at
or
.I
nf
oM

ot
if
co
ns
is
te
nt
ly

im
pr
ov
es

re
su
lts

of
al
lt
hr
ee

ba
se

G
N
N
s
by

3.
5%

on
av
er
ag
e
ac
ro
ss

da
ta
se
ts

T
he

bo
ld

fo
nt

in
di
ca
te
s
th
e
ac
cu
ra
cy

nu
m
be
rs
of

ou
r
m
od

el
In
fo
M
ot
if
(a
nd

va
ri
an
ts
)
w
ith

hi
gh

es
tp

er
fo
rm

an
ce

123



Self-supervised role learning for graph neural networks 2109

Ta
bl
e
5

N
od
e
cl
as
si
fic
at
io
n
re
su
lts

(%
te
st
ac
cu
ra
cy
)
on

di
s-
as
so
rt
at
iv
e
ai
r-
tr
af
fic

ne
tw
or
ks

T
ra
in
in
g
ra
tio

D
at
a

U
SA

E
ur
op
e

B
ra
zi
l

X
Y

20
%

40
%

20
%

40
%

20
%

40
%

P
ro
xi
m
it
y-
ba

se
d
gr
ap

h
em

be
dd

in
g
m
et
ho

ds

N
od

e2
V
ec

[1
4]

24
.6

±
0.
9

24
.8

±
0.
9

36
.5

±
1.
0

37
.4

±
1.
1

26
.3

±
1.
4

30
.4

±
1.
3

M
ot
if
2V

ec
[8
]

51
.3

±
1.
1

54
.8

±
1.
1

37
.1

±
1.
2

38
.1

±
1.
2

27
.2

±
1.
5

33
.9

±
1.
5

St
ru
ct
ur
al

gr
ap

h
em

be
dd

in
g
m
et
ho

ds

St
ru
ct
2V

ec
[3
6]

50
.4

±
0.
8

51
.3

±
0.
8

42
.5

±
0.
7

45
.6

±
0.
8

45
.8

±
1.
1

51
.8

±
1.
1

G
ra
ph

W
av
e
[1
1]

45
.2

±
1.
4

48
.0

±
1.
4

38
.1

±
1.
9

41
.1

±
1.
6

40
.2

±
2.
0

43
.1

±
1.
8

D
R
N
E
[5
5]

51
.3

±
1.
1

52
.4

±
1.
1

43
.1

±
1.
7

47
.6

±
1.
3

46
.5

±
2.
7

50
.2

±
2.
3

St
an

da
rd

gr
ap

h
ne
ur
al

ne
tw
or
ks

G
C
N
[2
2]

�
�

51
.9

±
0.
9

56
.0

±
0.
9

37
.4

±
0.
9

40
.1

±
0.
8

36
.5

±
1.
5

38
.9

±
1.
6

G
A
T
[5
7]

�
�

52
.7

±
1.
0

53
.5

±
0.
9

31
.5

±
1.
0

34
.3

±
1.
0

37
.3

±
1.
6

37
.9

±
1.
6

G
ra
ph
SA

G
E
[1
5]

�
�

45
.3

±
1.
2

49
.4

±
1.
2

28
.8

±
1.
0

32
.5

±
1.
0

36
.1

±
1.
6

37
.5

±
1.
6

JK
N
et
[6
4]

�
�

53
.8

±
1.
2

56
.1

±
1.
0

49
.7

±
1.
1

53
.8

±
1.
1

55
.9

±
1.
5

58
.4

±
1.
8

D
G
I
[5
8]

�
46

.4
±

1.
3

47
.3

±
1.
2

37
.5

±
1.
5

39
.9

±
1.
5

41
.4

±
1.
6

45
.2

±
1.
7

St
ru
ct
ur
al

gr
ap

h
ne
ur
al

ne
tw
or
ks

D
em

oN
et
[6
1]

�
�

58
.6

±
1.
2

58
.8

±
1.
1

40
.4

±
1.
3

46
.2

±
1.
2

46
.1

±
1.
4

48
.9

±
1.
5

M
ot
if
-C
N
N
[4
8]

�
�

53
.6

±
1.
0

54
.2

±
1.
0

37
.9

±
1.
0

41
.1

±
1.
1

28
.9

±
1.
6

35
.7

±
1.
7

M
C
N
[2
4]

�
�

54
.8

±
1.
4

54
.9

±
1.
3

36
.8

±
1.
2

39
.6

±
1.
5

42
.9

±
1.
6

43
.6

±
1.
4

M
ot
if
-r
eg
ul
ar
iz
ed

gr
ap

h
ne
ur
al

ne
tw
or
ks

(I
nf
oM

ot
if
)

In
fo
M
ot
if
-G

C
N

�
�

59
.5

±
0.
9

62
.9

±
0.
7

53
.5

±
0.
6

56
.9

±
0.
6

56
.6

±
1.
2

60
.7

±
1.
2

In
fo
M
ot
if
-J
K
N
et

�
�

61
.8

±
1.
6

64
.3

±
1.
2

53
.1

±
1.
2

56
.9

±
0.
6

62
.7

±
1.
8

67
.9

±
1.
5

In
fo
M
ot
if
-G

A
T

�
�

58
.0

±
0.
4

60
.4

±
0.
3

46
.0

±
1.
5

50
.0

±
2.
0

50
.6

±
1.
3

56
.3

±
1.
1

St
ru
ct
ur
al
em

be
dd
in
g
m
et
ho
ds

an
d
G
N
N
s
ou
tp
er
fo
rm

pr
ox
im

ity
-b
as
ed

m
od
el
s.
In
fo
M
ot
if
JK

N
et
ac
hi
ev
es

si
gn
ifi
ca
nt

ga
in
s
of

4–
14
%

ac
ro
ss

da
ta
se
ts

T
he

bo
ld

fo
nt

in
di
ca
te
s
th
e
ac
cu
ra
cy

nu
m
be
rs
of

ou
r
m
od

el
In
fo
M
ot
if
(a
nd

va
ri
an
ts
)
w
ith

hi
gh

es
tp

er
fo
rm

an
ce

123



2110 A. Sankar et al

Ta
bl
e
6

N
od

e
cl
as
si
fic

at
io
n
re
su
lts

(%
te
st
ac
cu
ra
cy
)
on

he
te
ro
ge
ne
ou

s
gr
ap
hs

fr
om

bi
bl
io
gr
ap
hi
c
an
d
m
ov
ie
ne
tw
or
ks

T
ra
in
in
g
ra
tio

D
at
a

D
B
L
P-
A

D
B
L
P-
P

M
ov
ie

X
Y

10
%

20
%

10
%

20
%

10
%

20
%

P
ro
xi
m
it
y-
ba

se
d
gr
ap

h
em

be
dd

in
g
m
et
ho

ds

N
od

e2
V
ec

[1
4]

63
.9

±
0.
4

65
.3

±
0.
6

68
.5

±
0.
4

70
.1

±
0.
5

54
.1

±
0.
3

56
.7

±
0.
3

M
ot
if
2V

ec
[8
]

62
.7

±
0.
7

64
.5

±
0.
6

68
.9

±
0.
9

71
.3

±
1.
1

55
.0

±
0.
3

57
.4

±
0.
5

St
ru
ct
ur
al

gr
ap

h
em

be
dd

in
g
m
et
ho

ds

St
ru
ct
2V

ec
[3
6]

34
.2

±
0.
4

36
.1

±
0.
4

34
.9

±
0.
2

35
.7

±
0.
3

32
.7

±
0.
4

34
.9

±
0.
1

G
ra
ph

W
av
e
[1
1]

34
.8

±
0.
5

37
.0

±
0.
6

35
.6

±
0.
2

36
.3

±
0.
3

33
.5

±
0.
4

36
.0

±
0.
4

D
R
N
E
[5
5]

33
.9

±
0.
3

36
.5

±
0.
3

35
.1

±
0.
5

35
.5

±
0.
4

31
.0

±
0.
2

35
.1

±
0.
2

St
an

da
rd

gr
ap

h
ne
ur
al

ne
tw
or
ks

G
C
N
[2
2]

�
�

65
.3

±
1.
1

69
.6

±
0.
9

71
.3

±
0.
7

73
.4

±
0.
8

55
.7

±
1.
0

57
.3

±
0.
7

G
A
T
[5
7]

�
�

67
.5

±
0.
8

71
.7

±
0.
8

71
.9

±
0.
5

73
.0

±
0.
7

58
.6

±
0.
9

59
.9

±
1.
0

G
ra
ph
SA

G
E
[1
5]

�
�

65
.3

±
0.
7

69
.0

±
0.
6

70
.9

±
0.
8

72
.7

±
0.
8

55
.6

±
0.
4

56
.4

±
0.
8

JK
N
et
[6
4]

�
�

69
.6

±
1.
0

73
.2

±
1.
2

69
.8

±
1.
1

72
.0

±
1.
3

58
.3

±
0.
7

60
.5

±
0.
9

D
G
I
[5
8]

�
64

.7
±

0.
5

68
.5

±
0.
7

41
.9

±
0.
8

61
.1

±
0.
6

38
.6

±
0.
9

40
.4

±
0.
9

St
ru
ct
ur
al

gr
ap

h
ne
ur
al

ne
tw
or
ks

D
em

oN
et
[6
1]

�
�

70
.7

±
1.
3

72
.3

±
1.
1

72
.6

±
0.
9

73
.5

±
0.
6

59
.5

±
0.
8

61
.2

±
0.
8

M
ot
if
-C
N
N
[4
8]

�
�

66
.4

±
1.
1

70
.1

±
1.
3

71
.5

±
0.
8

72
.2

±
0.
6

54
.3

±
0.
3

56
.9

±
0.
5

M
C
N
[2
4]

�
�

67
.1

±
1.
2

71
.2

±
1.
1

71
.9

±
0.
9

72
.5

±
0.
6

54
.7

±
0.
4

57
.2

±
0.
6

H
et
er
og
en
eo
us

gr
ap

h
ne
ur
al

ne
tw
or
ks

H
A
N
[6
0]

�
�

68
.2

±
1.
0

72
.0

±
1.
3

73
.1

±
0.
9

74
.0

±
0.
7

60
.7

±
1.
1

62
.1

±
0.
8

M
A
G
N
N
[1
3]

�
�

68
.9

±
0.
7

72
.5

±
0.
7

74
.7

±
0.
6

75
.8

±
0.
7

62
.1

±
0.
9

63
.0

±
0.
5

M
et
a-
G
N
N
[4
9]

�
�

71
.3

±
1.
2

73
.9

±
1.
4

74
.6

±
0.
6

75
.8

±
0.
6

61
.7

±
0.
5

63
.7

±
0.
7

123



Self-supervised role learning for graph neural networks 2111

Ta
bl
e
6

co
nt
in
ue
d

T
ra
in
in
g
ra
tio

D
at
a

D
B
L
P-
A

D
B
L
P-
P

M
ov
ie

X
Y

10
%

20
%

10
%

20
%

10
%

20
%

M
ot
if
-r
eg
ul
ar
iz
ed

gr
ap

h
ne
ur
al

ne
tw
or
ks

(I
nf
oM

ot
if
)

In
fo
M
ot
if
-G

C
N

�
�

73
.7

±
1.
2

77
.4

±
1.
1

78
.8

±
0.
4

79
.0

±
0.
7

64
.7

±
0.
8

65
.0

±
1.
1

In
fo
M
ot
if
-J
K
N
et

�
�

75
.6

±
0.
9

79
.9

±
0.
8

75
.5

±
1.
0

76
.3

±
1.
2

60
.7

±
0.
6

62
.0

±
0.
6

In
fo
M
ot
if
-G

A
T

�
�

72
.4

±
1.
0

75
.3

±
1.
4

77
.1

±
0.
7

77
.9

±
0.
6

62
.8

±
0.
5

64
.2

±
0.
5

H
et
er
og
en
eo
us

G
N
N

m
od
el
s
(M

A
G
N
N
,M

et
a-
G
N
N
)
ty
pi
ca
lly

ou
tp
er
fo
rm

st
ru
ct
ur
al

G
N
N
s
(D

em
oN

et
,M

ot
if
-C
N
N
,M

C
N
)
an
d
ty
pe
-a
gn
os
tic

m
es
sa
ge
-p
as
si
ng

G
N
N
s
(G

C
N
,

G
A
T
).
In
fo
M
ot
if
ac
hi
ev
es

si
gn
ifi
ca
nt

ga
in
s
of

5%
on

av
er
ag
e
ac
ro
ss

da
ta
se
ts

T
he

bo
ld

fo
nt

in
di
ca
te
s
th
e
ac
cu
ra
cy

nu
m
be
rs
of

ou
r
m
od

el
In
fo
M
ot
if
(a
nd

va
ri
an
ts
)
w
ith

hi
gh

es
tp

er
fo
rm

an
ce

123



2112 A. Sankar et al

Table 7 Ablation study results with 40% training ratio on citation networks

Dataset Cora Citeseer PubMed

InfoMotif-GCN (LS + λLMI ) 87.4 ± 0.4 78.5 ± 0.5 88.3 ± 0.2

w/o novelty weights (βv = 1 in Eq. 9) 86.4 ± 0.5 77.6 ± 0.5 87.8 ± 0.3

w/o task weights (αvt = 1 in Eq. 7) 84.6 ± 0.4 77.3 ± 0.4 87.3 ± 0.2

w/o novelty and task weights 84.0 ± 0.5 76.4 ± 0.6 87.3 ± 0.2

Base model GCN (LB ) 82.0 ± 0.4 76.6 ± 0.3 86.1 ± 0.5

The novelty and task weighting strategies improve classification accuracies by 2% on average
The bold font indicates the accuracy numbers of our model InfoMotif (and variants) with highest performance

6.5 Heterogeneous graphs (RQ2)

In heterogeneous graphs, we train InfoMotif and other baselines that use motifs/metagraphs
using typed 3-node network motifs (shown in Figs. 3b, 5b) that are defined based on the
heterogeneous type schema (Figs. 3a, 5a). Our experimental results comparing our frame-
work InfoMotif with baselines on DBLP and movie networks are shown in Table 6.

We find that message-passing GNNs (such as GCN and GAT) generally outperform
conventional embedding methods (such as node2vec). Structural embedding methods (e.g.,
struc2vec) perform poorly; this reveals their inability to capture structural aspects relevant to
heterogeneous graphs with rich type semantics. Heterogeneous GNNs such as MAGNN and
Meta-GNN outperform homogeneous GNNs owing to their type-aware semantic neighbor
aggregation via metapaths and metagraphs, respectively. Our framework InfoMotif further
learns type-aware attributed structural roles which results in significant performance gains
of 5% on average over prior approaches.

6.6 Model ablation study (RQ3)

We present an ablation study on citation networks to analyze the importance of major com-
ponents in InfoMotif (Table 7)

– Remove novelty-driven sample weighting We set the novelty βv = 1 (Eq. 9) to test the
importance of addressing motif occurrence skew. We observe consistent 1% gains due
to our novelty-driven sample weighting.

– Remove task-driven motif weighting We remove the node-sensitive motif weights from
the motif regularization loss (Eq. 7) by setting αvt = 1 for every node-motif pair. Con-
textually weighting different motif regularizers at a node-level granularity results in 2%
average accuracy gains.

– Remove both novelty- and task-driven weighting This variant applies a uniform motif
regularization over all nodes without distinguishing the nodes-sensitive relevance of
each motif, which significantly degrades classification accuracy.

6.7 Qualitative analysis (RQ4)

We qualitatively examine the source of InfoMotif’s gains over the base GNN (GCN due to
its consistent performance), by analyzing node degree, label sparsity, and attribute diversity
in local node neighborhoods, on the Cora and Citeseer networks.
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Fig. 7 Classification accuracy over label fraction quartiles. (Q1: smaller label fraction). InfoMotif has larger
gains over GCN in Q1 and Q2 (nodes that exhibit label sparsity)

Node degree

We divide the set of test nodes into bins based on four degree ranges. Figure 6 depicts the
variation in classification accuracy for GCN and InfoMotif-GCN across degree segments, on
Cora and Citeseer datasets.

InfoMotif has consistent performance improvements over GCN across all degree seg-
ments, with notably higher gains for low-to-medium degree nodes (quartiles Q1 and Q2).
Learning structural roles through self-supervised motif regularization is beneficial for nodes
with limited local structural information.

Label sparsity

We define the label fraction for a node as the fraction of labeled training nodes in its 2-hop
neighborhood, i.e., a node exhibits label sparsity if it has very few or no labeled training
nodes within its 2-hop aggregation range. We separate test nodes into four quartiles by their
label fraction. Figure 7 depicts classification results for GCN and InfoMotif-GCN under each
quartile. (Q1 has nodes with small label fractions.)

InfoMotif has stronger performance gains overGCN for nodeswith smaller label fractions
(quartiles Q1 andQ2), which empirically validates the efficacy of our motif-based regulariza-
tion framework in addressing the key limitation of GNNs (Sect. 4.1), i.e., InfoMotif benefits
nodes with very few or no labeled nodes within their k-hop aggregation ranges.

Attribute diversity

Wemeasure the local attribute diversity of a node by themean pair-wise attribute dissimilarity
(computed by cosine distance) of itself with other nodes in its 2-hop neighborhood, i.e., a
node that exhibits strong homophily with its neighbors has low attribute diversity. We report
classification results across attribute diversity quartiles in Fig. 8.

Nodes with diverse attributed neighborhoods are typically harder examples for classifica-
tion. Regularizing GNNs to learn attributed structures via motif occurrences can accurately
classify diverse nodes, as evidenced by the higher relative gains of InfoMotif for diverse
nodes (quartiles Q3 and Q4).
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Fig. 8 Classification accuracy across attribute diversity quartiles. (Q4: high attribute diversity). InfoMotif has
stronger gains in Q3 and Q4 (nodes with diverse attributed neighborhoods)

Fig. 9 Classification accuracy increases slowly with the number of sampled motif instances and stabilizes
around 15 to 20. Variance bands indicate 95% confidence intervals over 10 runs

6.8 Efficiency and sensitivity analysis (RQ5)

We now analyze the sensitivity of InfoMotif to hyper-parameters and empirically quantify
the cost of motif-based regularization on different choices of base GNN models.

Parameter sensitivity

We examine the effect of hyper-parameter Q that controls the number of motif instances
sampled per node to train our motif-based discriminators (Eq. 4). Figure 9 shows variation
in accuracies of our three GNN variants with the number of sampled instances (5 to 30), on
Cora and Citeseer networks.

Performance of all GNN variants stabilizes with 20 instances across both datasets. Since
the complexity of our framework scales linearly with Q, we fix Q = 20 across datasets to
provide an effective trade-off between compute-cost and performance

Efficiency analysis

We empirically evaluate the added complexity of InfoMotif on two base GNNmodels, GCN,
and GAT. We report the model training time per epoch (forward pass, loss computation,
backward pass) on synthetically generated Barabasi–Albert networks [1] with 5000 nodes
and increasing link density (Fig. 10).
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Fig. 10 Runtime comparison of InfoMotif variants with its base GNNs. InfoMotif has minimal computational
overheads; notice the nearly constant runtime gap with increasing degree

InfoMotif adds a small fraction of the base GNN runtime, and the added complexity
scales linearly with the number of nodes, as evidenced by its nearly constant runtime gap
over increasing link density (Fig. 10). Furthermore, our GCN variant InfoMotif-GCN is
significantly more efficient than GAT.

7 Discussion

Our framework is designed to address the limitations of oversmoothing and localization in
prior message-passing GNNs.

InfoMotif is orthogonal to advances in GNN architectures that improve the structural
distinguishability of node representations through carefully designed neighborhood aggrega-
tors. In contrast, we enhance the structural resolution of node representations by regularizing
base GNNs through self-supervised learning objectives designed to capture connectivity in
higher-order motif structures. By training contrastive discriminators to discover attribute cor-
relations among motif instances across the entire graph, our approach learns generalizable
global roles in addition to modeling local connectivity patterns. The enhanced quality of our
learned node representations is further evidenced by our superior empirical performance for
nodes with diverse attributed neighborhoods (Sect. 6.7).

InfoMotif addresses the challenge of localization by regularizing base GNNs to learn
attributed structural roles through self-supervised training objectives. Specifically, our
approach statistically relates distant nodes in the graph with covarying attributed structures,
to effectively overcome label sparsity in local neighborhoods (Sect. 6.7). Instead of adopting
deeper GNNs that directly expand neighborhood aggregation ranges, we demonstrate the
effectiveness of regularizing shallow base GNNs to learn attributed structural roles. Com-
pared to deeper GNNs that scale poorly with neighborhood sizes, our regularization strategy
enables efficient model inference.

In our work, we choose networkmotif structures as the central basis to formulate structural
roles. In contrast to alternative approaches to quantify structural similarity based on coarse
properties like degree sequences [36] or rigid notions of structural equivalence [41], network
motifs are fundamental higher-order connectivity structures that enable flexible generaliza-
tion to complex heterogeneous graphs with rich semantics. We empirically demonstrate the
utilities of untypedmotifs in homogeneous graphs and typedmotifs in heterogeneous graphs.
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Our key modeling hypothesis is the importance of attribute covariance in local structures
toward the learning application (e.g., classification in social networks). Our substantial gains
on twodiverse classes of datasets indicate broad applicability for InfoMotif across graphswith
varied structural characteristics. However, the performance gainsmay diminish in application
scenarios (e.g., learning in regular mesh graphs) where modeling such covariance is not
beneficial or even necessary.

8 Conclusion

This paper presents a new class of motif-regularized GNNs with an architecture-agnostic
framework InfoMotif for semi-supervised learning on graphs. To overcome limitations of
prior GNNs due to localized message passing, we introduce attributed structural roles to
regularize GNNs by learning statistical dependencies between structurally similar nodes
with covarying attributes, independent of network proximity. InfoMotif maximizes motif-
basedmutual information and dynamically prioritizes the significance of differentmotifs. Our
experiments on nine real-world datasets spanning homogeneous and heterogeneous networks
show substantial consistent gains for InfoMotif over state-of-the-art methods.
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